A245826 Triangle read by rows: T(m,n) is the Szeged index of the grid graph P_m X P_n (1 <= n <= m).
0, 1, 16, 4, 59, 216, 10, 144, 526, 1280, 20, 285, 1040, 2530, 5000, 35, 496, 1809, 4400, 8695, 15120, 56, 791, 2884, 7014, 13860, 24101, 38416, 84, 1184, 4316, 10496, 20740, 36064, 57484, 86016, 120, 1689, 6156, 14970, 29580, 51435, 81984, 122676, 174960, 165, 2320, 8455, 20560, 40625, 70640, 112595, 168480, 240285, 330000
Offset: 1
Examples
T(2,2) = 16 because P_2 X P_2 is the square C_4 and each of its 4 edges contributes 2*2=4 to its Szeged index. Triangle starts: 0; 1,16; 4,59,216; 10,144,526,1280; 20,285,1040,2530,5000;
Links
- Reinhard Zumkeller, Rows n = 1..125 of triangle, flattened
- S. Klavzar, A. Rajapakse, I. Gutman, The Szeged and the Wiener index of graphs, Appl. Math. Lett., 9, 1996, 45-49.
Programs
-
Haskell
a245826 n k = n * k * (2 * n^2 * k^2 - n^2 - k^2) `div` 6 a245826_row n = map (a245826 n) [1..n] a245826_tabl = map a245826_row [1..] -- Reinhard Zumkeller, Aug 07 2014
-
Maple
T:=proc(m,n) options operator, arrow: (1/6)*m*n*(2*m^2*n^2-m^2-n^2) end proc: for m to 12 do seq(T(m, n), n = 1 .. m) end do; # yields sequence in triangular form
-
Mathematica
T[m_, n_] := (1/6)*m*n*(2*m^2*n^2 - m^2 - n^2); Table[T[m, n], {m, 1, 12}, {n, 1, m}] // Flatten (* Jean-François Alcover, Feb 09 2018 *)
Formula
T(m,n) = mn(2m^2 n^2 - m^2 - n^2)/6. See the Klavzar et al. reference; p. 47, line 6; there is a typo: n^2 - m^2 should be n^2 + m^2.
Comments