cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245826 Triangle read by rows: T(m,n) is the Szeged index of the grid graph P_m X P_n (1 <= n <= m).

Original entry on oeis.org

0, 1, 16, 4, 59, 216, 10, 144, 526, 1280, 20, 285, 1040, 2530, 5000, 35, 496, 1809, 4400, 8695, 15120, 56, 791, 2884, 7014, 13860, 24101, 38416, 84, 1184, 4316, 10496, 20740, 36064, 57484, 86016, 120, 1689, 6156, 14970, 29580, 51435, 81984, 122676, 174960, 165, 2320, 8455, 20560, 40625, 70640, 112595, 168480, 240285, 330000
Offset: 1

Views

Author

Emeric Deutsch, Aug 06 2014

Keywords

Comments

T(n,1) = Szeged index of the path tree P_n = A000292(n-1).
T(n,2) = Szeged index of the ladder graph P_2 X P_n = A063521(n).
T(n,3) = Szeged index of the grid graph P_3 X P_n = A245827(n).
T(n,n) = Szeged index of the grid graph P_n X P_n = A245828(n).

Examples

			T(2,2) = 16 because P_2 X P_2 is the square C_4 and each of its 4 edges contributes 2*2=4 to its Szeged index.
Triangle starts:
0;
1,16;
4,59,216;
10,144,526,1280;
20,285,1040,2530,5000;
		

Crossrefs

Cf. A245940 (row sums), A245941 (central terms).

Programs

  • Haskell
    a245826 n k = n * k * (2 * n^2 * k^2 - n^2 - k^2) `div` 6
    a245826_row n = map (a245826 n) [1..n]
    a245826_tabl = map a245826_row [1..]
    -- Reinhard Zumkeller, Aug 07 2014
  • Maple
    T:=proc(m,n) options operator, arrow: (1/6)*m*n*(2*m^2*n^2-m^2-n^2) end proc: for m to 12 do seq(T(m, n), n = 1 .. m) end do; # yields sequence in triangular form
  • Mathematica
    T[m_, n_] := (1/6)*m*n*(2*m^2*n^2 - m^2 - n^2); Table[T[m, n], {m, 1, 12}, {n, 1, m}] // Flatten (* Jean-François Alcover, Feb 09 2018 *)

Formula

T(m,n) = mn(2m^2 n^2 - m^2 - n^2)/6. See the Klavzar et al. reference; p. 47, line 6; there is a typo: n^2 - m^2 should be n^2 + m^2.