A245828
Szeged index of the grid graph P_n X P_n.
Original entry on oeis.org
0, 16, 216, 1280, 5000, 15120, 38416, 86016, 174960, 330000, 585640, 988416, 1599416, 2497040, 3780000, 5570560, 8018016, 11302416, 15638520, 21280000, 28523880, 37715216, 49252016, 63590400, 81250000, 102819600, 128963016, 160425216, 198038680, 242730000, 295526720, 357564416, 430094016, 514489360
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- S. Klavzar, A. Rajapakse and I. Gutman, The Szeged and the Wiener index of graphs, Appl. Math. Lett., Vol. 9, No. 5 (1996), pp. 45-49.
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
-
[n^4*(n^2-1)/3: n in [1..40]]; // Vincenzo Librandi, Aug 07 2014
-
a := proc (n) options operator, arrow: (1/3)*n^4*(n^2-1) end proc: seq(a(n), n = 1 .. 40);
-
CoefficientList[Series[8 x (1 + x) (2 + 11 x + 2 x^2)/(1 - x)^7, {x, 0, 40}], x] (* Vincenzo Librandi, Aug 07 2014 *)
Table[(n^4 (n^2-1))/3,{n,40}] (* Harvey P. Dale, Mar 25 2021 *)
A143368
Triangle read by rows: T(n,k) is the Wiener index of a k X n grid (i.e., P_k X P_n, where P_m is the path graph on m vertices; 1 <= k <= n).
Original entry on oeis.org
0, 1, 8, 4, 25, 72, 10, 56, 154, 320, 20, 105, 280, 570, 1000, 35, 176, 459, 920, 1595, 2520, 56, 273, 700, 1386, 2380, 3731, 5488, 84, 400, 1012, 1984, 3380, 5264, 7700, 10752, 120, 561, 1404, 2730, 4620, 7155, 10416, 14484, 19440
Offset: 1
Presentation as symmetric square array starts:
======================================================
n\k| 1 2 3 4 5 6 7 8 9
---|--------------------------------------------------
1 | 0 1 4 10 20 35 56 84 120 ...
2 | 1 8 25 56 105 176 273 400 561 ...
3 | 4 25 72 154 280 459 700 1012 1404 ...
4 | 10 56 154 320 570 920 1386 1984 2730 ...
5 | 20 105 280 570 1000 1595 2380 3380 4620 ...
6 | 35 176 459 920 1595 2520 3731 5264 7155 ...
7 | 56 273 700 1386 2380 3731 5488 7700 10416 ...
8 | 84 400 1012 1984 3380 5264 7700 10752 14484 ...
9 | 120 561 1404 2730 4620 7155 10416 14484 19440 ...
... - _Andrew Howroyd_, May 27 2017
T(2,2)=8 because in a square we have four distances equal to 1 and two distances equal to 2.
T(2,1)=1 because on the path graph on two vertices there is one distance equal to 1.
T(3,2)=25 because on the P(2) X P(3) graph there are 7 distances equal to 1, 6 distances equal to 2 and 2 distances equal to 3, with 7*1 + 6*2 + 2*3 = 25.
Triangle starts: 0; 1,8; 4,25,72; 10,56,154,320;
- Michael De Vlieger, Table of n, a(n) for n = 1..11325 (rows 1 <= n <= 150).
- A. Graovac and T. Pisanski, On the Wiener index of a graph, J. Math. Chem., 8 (1991), 53-62.
- B. E. Sagan, Y-N. Yeh and P. Zhang, The Wiener Polynomial of a Graph, Internat. J. of Quantum Chem., 60, 1996, 959-969.
- Eric Weisstein's World of Mathematics, Grid Graph
- Eric Weisstein's World of Mathematics, Wiener Index
-
T:=proc(n, k) options operator, arrow: (1/6)*k*n*(n+k)*(k*n-1) end proc: for n to 9 do seq(T(n,k),k=1..n) end do; # yields sequence in triangular form
-
Table[k n (n + k) (k n - 1)/6, {n, 9}, {k, n}] // Flatten (* Michael De Vlieger, May 28 2017 *)
-
T(n,k)=k*n*(n+k)*(k*n-1)/6;
for (n=1,8,for(k=1,8,print1(T(n,k),", "));print) \\ Andrew Howroyd, May 27 2017
A245827
Szeged index of the grid graph P_3 X P_n.
Original entry on oeis.org
4, 59, 216, 526, 1040, 1809, 2884, 4316, 6156, 8455, 11264, 14634, 18616, 23261, 28620, 34744, 41684, 49491, 58216, 67910, 78624, 90409, 103316, 117396, 132700, 149279, 167184, 186466, 207176, 229365, 253084, 278384, 305316, 333931, 364280, 396414, 430384, 466241, 504036, 543820
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- S. Klavzar, A. Rajapakse, I. Gutman, The Szeged and the Wiener index of graphs, Appl. Math. Lett., 9, 1996, 45-49.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
-
[(1/2)*n*(17*n^2 - 9): n in [1..40]]; // Vincenzo Librandi, Aug 07 2014
-
a := proc (n) options operator, arrow: (1/2)*n*(17*n^2-9) end proc: seq(a(n), n = 1 .. 40);
-
CoefficientList[Series[(4 x^2 + 43 x + 4)/(x - 1)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Aug 07 2014 *)
LinearRecurrence[{4,-6,4,-1},{4,59,216,526},40] (* Harvey P. Dale, Oct 21 2017 *)
-
Vec(x*(4*x^2+43*x+4)/(x-1)^4 + O(x^100)) \\ Colin Barker, Aug 07 2014
A245940
(2n^7 + 4n^6 - n^5 - 4n^4 - n^3) / 24.
Original entry on oeis.org
0, 0, 17, 279, 1960, 8875, 30555, 87122, 216384, 483570, 994125, 1909985, 3469752, 6013189, 10010455, 16096500, 25111040, 38144532, 56590569, 82205115, 117173000, 164182095, 226505587, 308092774, 413668800, 548843750, 720231525, 935578917, 1203905304
Offset: 0
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-1).
-
a245940 n = n^3 * (2 * n^3 + 2 * n^2 - 3 * n - 1) * (n + 1) `div` 24
-
[(2*n^7 + 4*n^6 - n^5 - 4*n^4 - n^3) / 24: n in [0..30]] // Vincenzo Librandi, Aug 09 2014
-
A245940:=n->(2*n^7 + 4*n^6 - n^5 - 4*n^4 - n^3) / 24: seq(A245940(n), n=0..30); # Wesley Ivan Hurt, Aug 09 2014
-
Table[(2 n^7 + 4 n^6 - n^5 - 4 n^4 - n^3)/24, {n, 0, 30}] (* Vincenzo Librandi, Aug 09 2014 *)
LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{0,0,17,279,1960,8875,30555,87122},30] (* Harvey P. Dale, Apr 19 2018 *)
-
concat([0,0], Vec(x^2*(x^4+55*x^3+204*x^2+143*x+17)/(x-1)^8 + O(x^100))) \\ Colin Barker, Aug 08 2014
A245941
(16n^6 - 24n^5 + 2n^4 + 11n^3 - 6n^2 + n) / 6.
Original entry on oeis.org
0, 0, 59, 1040, 7014, 29580, 94105, 247884, 570220, 1184424, 2271735, 4087160, 6977234, 11399700, 17945109, 27360340, 40574040, 58723984, 83186355, 115606944, 157934270, 212454620, 281829009, 369132060, 477892804, 612137400, 776433775, 975938184, 1216443690
Offset: 0
-
a245941 n = n * (16*n^5 - 24*n^4 + 2*n^3 + 11*n^2 - 6*n + 1) `div` 6
-
[(16*n^6-24*n^5+2*n^4+11*n^3-6*n^2+n)/6: n in [0..30]] // Vincenzo Librandi, Aug 09 2014
-
A245941:=n->(16*n^6-24*n^5+2*n^4+11*n^3-6*n^2+n)/6: seq(A245941(n), n=0..30); # Wesley Ivan Hurt, Aug 09 2014
-
Table[(16 n^6 - 24 n^5 + 2 n^4 + 11 n^3 - 6 n^2 + n)/6, {n, 0, 30}] (* Vincenzo Librandi, Aug 09 2014 *)
LinearRecurrence[{7,-21,35,-35,21,-7,1},{0,0,59,1040,7014,29580,94105},30] (* Harvey P. Dale, Apr 13 2015 *)
-
concat([0,0], Vec(-x^2*(4*x^4+257*x^3+973*x^2+627*x+59)/(x-1)^7 + O(x^100))) \\ Colin Barker, Aug 08 2014
Showing 1-5 of 5 results.
Comments