cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245827 Szeged index of the grid graph P_3 X P_n.

Original entry on oeis.org

4, 59, 216, 526, 1040, 1809, 2884, 4316, 6156, 8455, 11264, 14634, 18616, 23261, 28620, 34744, 41684, 49491, 58216, 67910, 78624, 90409, 103316, 117396, 132700, 149279, 167184, 186466, 207176, 229365, 253084, 278384, 305316, 333931, 364280, 396414, 430384, 466241, 504036, 543820
Offset: 1

Views

Author

Emeric Deutsch, Aug 06 2014

Keywords

Crossrefs

Programs

  • Magma
    [(1/2)*n*(17*n^2 - 9): n in [1..40]]; // Vincenzo Librandi, Aug 07 2014
  • Maple
    a := proc (n) options operator, arrow: (1/2)*n*(17*n^2-9) end proc: seq(a(n), n = 1 .. 40);
  • Mathematica
    CoefficientList[Series[(4 x^2 + 43 x + 4)/(x - 1)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Aug 07 2014 *)
    LinearRecurrence[{4,-6,4,-1},{4,59,216,526},40] (* Harvey P. Dale, Oct 21 2017 *)
  • PARI
    Vec(x*(4*x^2+43*x+4)/(x-1)^4 + O(x^100)) \\ Colin Barker, Aug 07 2014
    

Formula

a(n) = (1/2)*n*(17*n^2 - 9).
a(n) = A245826(n, 3).
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). G.f.: x*(4*x^2+43*x+4) / (x-1)^4. - Colin Barker, Aug 07 2014