cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245828 Szeged index of the grid graph P_n X P_n.

Original entry on oeis.org

0, 16, 216, 1280, 5000, 15120, 38416, 86016, 174960, 330000, 585640, 988416, 1599416, 2497040, 3780000, 5570560, 8018016, 11302416, 15638520, 21280000, 28523880, 37715216, 49252016, 63590400, 81250000, 102819600, 128963016, 160425216, 198038680, 242730000, 295526720, 357564416, 430094016, 514489360
Offset: 1

Views

Author

Emeric Deutsch, Aug 06 2014

Keywords

Crossrefs

Programs

  • Magma
    [n^4*(n^2-1)/3: n in [1..40]]; // Vincenzo Librandi, Aug 07 2014
  • Maple
    a := proc (n) options operator, arrow: (1/3)*n^4*(n^2-1) end proc: seq(a(n), n = 1 .. 40);
  • Mathematica
    CoefficientList[Series[8 x (1 + x) (2 + 11 x + 2 x^2)/(1 - x)^7, {x, 0, 40}], x] (* Vincenzo Librandi, Aug 07 2014 *)
    Table[(n^4 (n^2-1))/3,{n,40}] (* Harvey P. Dale, Mar 25 2021 *)

Formula

a(n) = (1/3)*n^4*(n^2 - 1).
G.f.: 8*x^2*(1+x)*(2+11*x+2*x^2)/(1-x)^7.
a(n) = A245826(n,n).
a(n) = 4 * A208954(n).
From Amiram Eldar, Jan 09 2022: (Start)
Sum_{n>=2} 1/a(n) = 33/4 - Pi^2/2 - Pi^4/30.
Sum_{n>=2} (-1)^n/a(n) = 7*Pi^4/240 + Pi^2/4 - 21/4. (End)