cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245878 Primes p such that p - d and p + d are also primes, where d is the smallest nonzero digit of p.

Original entry on oeis.org

67, 607, 6977, 68897, 69067, 69997, 79867, 80677, 88867, 97967, 609607, 660067, 669667, 676987, 678767, 697687, 707677, 766867, 777677, 786697, 866087, 879667, 880667, 886987, 899687, 906707, 909767, 966997, 990967, 6069977, 6096907, 6097997, 6678877
Offset: 1

Views

Author

Colin Barker, Aug 05 2014

Keywords

Comments

Intersection of A245744 and A245745.
The smallest nonzero digit of a(n) is 6, and the least significant digit of a(n) is 7.

Examples

			The prime 607 is in the sequence because 607 - 6 = 601 and 607 + 6 = 613 are both primes.
		

Crossrefs

Programs

  • Maple
    f:= proc(x) local L,i,y;
       L:= subs(1=6,2=7,3=8,4=9, convert(x,base,5));
       if not member(6,L) then return NULL fi;
       y:= add(L[i]*10^(i-1),i=1..nops(L));
       if isprime(y) and isprime(y-6) and isprime(y+6) then y else NULL fi
    end proc:
    map(f, [seq(2+5*k,k=1..10000)]); # Robert Israel, Nov 25 2024
  • Mathematica
    pdQ[p_]:=Module[{c=Min[DeleteCases[IntegerDigits[p],0]]},AllTrue[p+{c,-c},PrimeQ]]; Select[Prime[Range[460000]],pdQ] (* Harvey P. Dale, Feb 26 2023 *)
  • PARI
    s=[]; forprime(p=2, 7000000, v=vecsort(digits(p),,8); d=v[1+!v[1]]; if(isprime(p-d) && isprime(p+d), s=concat(s, p))); s
    
  • Python
    from sympy import isprime
    from sympy import prime
    for n in range(1, 10**6):
      s=prime(n)
      lst = []
      for i in str(s):
        if i != '0':
          lst.append(int(i))
      if isprime(s+min(lst)) and isprime(s-min(lst)):
        print(s, end=', ')
    # Derek Orr, Aug 13 2014