A245878 Primes p such that p - d and p + d are also primes, where d is the smallest nonzero digit of p.
67, 607, 6977, 68897, 69067, 69997, 79867, 80677, 88867, 97967, 609607, 660067, 669667, 676987, 678767, 697687, 707677, 766867, 777677, 786697, 866087, 879667, 880667, 886987, 899687, 906707, 909767, 966997, 990967, 6069977, 6096907, 6097997, 6678877
Offset: 1
Examples
The prime 607 is in the sequence because 607 - 6 = 601 and 607 + 6 = 613 are both primes.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
f:= proc(x) local L,i,y; L:= subs(1=6,2=7,3=8,4=9, convert(x,base,5)); if not member(6,L) then return NULL fi; y:= add(L[i]*10^(i-1),i=1..nops(L)); if isprime(y) and isprime(y-6) and isprime(y+6) then y else NULL fi end proc: map(f, [seq(2+5*k,k=1..10000)]); # Robert Israel, Nov 25 2024
-
Mathematica
pdQ[p_]:=Module[{c=Min[DeleteCases[IntegerDigits[p],0]]},AllTrue[p+{c,-c},PrimeQ]]; Select[Prime[Range[460000]],pdQ] (* Harvey P. Dale, Feb 26 2023 *)
-
PARI
s=[]; forprime(p=2, 7000000, v=vecsort(digits(p),,8); d=v[1+!v[1]]; if(isprime(p-d) && isprime(p+d), s=concat(s, p))); s
-
Python
from sympy import isprime from sympy import prime for n in range(1, 10**6): s=prime(n) lst = [] for i in str(s): if i != '0': lst.append(int(i)) if isprime(s+min(lst)) and isprime(s-min(lst)): print(s, end=', ') # Derek Orr, Aug 13 2014
Comments