A245909 The number of distinct prime factors of prime(n)^3-1.
1, 2, 2, 3, 4, 3, 2, 3, 4, 4, 4, 4, 3, 4, 4, 4, 3, 5, 5, 4, 3, 5, 4, 3, 3, 3, 4, 5, 4, 4, 4, 4, 5, 5, 5, 5, 4, 5, 3, 3, 4, 5, 6, 4, 4, 4, 7, 4, 4, 5, 4, 5, 4, 4, 3, 5, 5, 4, 6, 5, 5, 3, 5, 5, 4, 4, 6, 5, 5, 5, 4, 5, 5, 6, 5, 3, 4, 5, 4, 4, 5, 5, 6, 4, 5, 5, 4
Offset: 1
Keywords
Links
- Jens Kruse Andersen, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[#PrimeDivisors(p^3-1): p in PrimesUpTo(500)]; // Bruno Berselli, Aug 06 2014
-
Maple
A245909 := proc(n) A001221(ithprime(n)^3-1) ; end proc:
-
Mathematica
Table[PrimeNu[Prime[n]^3 - 1], {n, 100}] (* Vincenzo Librandi, Aug 06 2014 *)
-
PARI
vector(500, n, omega(prime(n)^3-1)) \\ Derek Orr, Aug 05 2014
-
Python
from sympy import primefactors,prime def A245909(n): return len(primefactors(prime(n)**3-1)) # Chai Wah Wu, Aug 05 2014