cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245909 The number of distinct prime factors of prime(n)^3-1.

Original entry on oeis.org

1, 2, 2, 3, 4, 3, 2, 3, 4, 4, 4, 4, 3, 4, 4, 4, 3, 5, 5, 4, 3, 5, 4, 3, 3, 3, 4, 5, 4, 4, 4, 4, 5, 5, 5, 5, 4, 5, 3, 3, 4, 5, 6, 4, 4, 4, 7, 4, 4, 5, 4, 5, 4, 4, 3, 5, 5, 4, 6, 5, 5, 3, 5, 5, 4, 4, 6, 5, 5, 5, 4, 5, 5, 6, 5, 3, 4, 5, 4, 4, 5, 5, 6, 4, 5, 5, 4
Offset: 1

Views

Author

R. J. Mathar, Aug 05 2014

Keywords

Programs

  • Magma
    [#PrimeDivisors(p^3-1): p in PrimesUpTo(500)]; // Bruno Berselli, Aug 06 2014
  • Maple
    A245909 := proc(n)
        A001221(ithprime(n)^3-1) ;
    end proc:
  • Mathematica
    Table[PrimeNu[Prime[n]^3 - 1], {n, 100}] (* Vincenzo Librandi, Aug 06 2014 *)
  • PARI
    vector(500, n, omega(prime(n)^3-1)) \\ Derek Orr, Aug 05 2014
    
  • Python
    from sympy import primefactors,prime
    def A245909(n):
        return len(primefactors(prime(n)**3-1)) # Chai Wah Wu, Aug 05 2014
    

Formula

a(n) = A001221(A030078(n)-1).