cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A245925 G.f.: Sum_{n>=0} x^n*Sum_{k=0..n} (-1)^k * C(n,k)^2 * Sum_{j=0..k} C(k,j)^2 * x^j.

Original entry on oeis.org

1, -3, 25, -243, 2601, -29403, 344569, -4141875, 50737129, -630663003, 7930793025, -100681224075, 1288236350025, -16592960274075, 214939203248025, -2797935722568243, 36578032462268649, -480000660000226875, 6320012816203363489, -83462977778600141643, 1105193229806740453201
Offset: 0

Views

Author

Paul D. Hanna, Aug 15 2014

Keywords

Comments

The g.f.s formed from a(2*n)^(1/2) and (-a(2*n+1)/3)^(1/2) are:
A245926: sqrt( (1-x + sqrt(1-14*x+x^2)) / (2*(1-14*x+x^2)) );
A245927: sqrt( (1-x - sqrt(1-14*x+x^2)) / (6*x*(1-14*x+x^2)) ).
Lim_{n->infinity} a(n+1)/a(n) = -(7 + 4*sqrt(3)).

Examples

			G.f.: A(x) = 1 - 3*x^2 + 25*x^4 - 243*x^6 + 2601*x^8 - 29403*x^10 + ...
where the g.f. is given by the binomial series:
A(x) = 1 + x*(1 - (1+x)) + x^2*(1 - 2^2*(1+x) + (1+2^2*x+x^2))
+ x^3*(1 - 3^2*(1+x) + 3^2*(1+2^2*x+x^2) - (1+3^2*x+3^2*x^2+x^3))
+ x^4*(1 - 4^2*(1+x) + 6^2*(1+2^2*x+x^2) - 4^2*(1+3^2*x+3^2*x^2+x^3) + (1+4^2*x+6^2*x^2+4^2*x^3+x^4))
+ x^5*(1 - 5^2*(1+x) + 10^2*(1+2^2*x+x^2) - 10^2*(1+3^2*x+3^2*x^2+x^3) + 5^2*(1+4^2*x+6^2*x^2+4^2*x^3+x^4) - (1+5^2*x+10^2*x^2+10^2*x^3+5^2*x^4+x^5))
+ x^6*(1 - 6^2*(1+x) + 15^2*(1+2^2*x+x^2) - 20^2*(1+3^2*x+3^2*x^2+x^3) + 15^2*(1+4^2*x+6^2*x^2+4^2*x^3+x^4) - 6^2*(1+5^2*x+10^2*x^2+10^2*x^3+5^2*x^4+x^5) + (1+6^2*x+15^2*x^2+20^2*x^3+15^2*x^4+6^2*x^5+x^6)) + ...
in which the coefficients of odd powers of x vanish.
We can also express the g.f. by the binomial series identity:
A(x) = 1/(1+x) + x/(1+x)^3*(1-x)^2 + x^2/(1+x)^5*(1 - 2^2*x + x^2)^2
+ x^3/(1+x)^7*(1 - 3^2*x + 3^2*x^2 - x^3)^2
+ x^4/(1+x)^9*(1 - 4^2*x + 6^2*x^2 - 4^2*x^3 + x^4)^2
+ x^5/(1+x)^11*(1 - 5^2*x + 10^2*x^2 - 10^2*x^3 + 5^2*x^4 - x^5)^2
+ x^6/(1+x)^13*(1 - 6^2*x + 15^2*x^2 - 20^2*x^3 + 15^2*x^4 - 6^2*x^5 + x^6)^2 + ...
		

Crossrefs

Programs

  • Maple
    A245925 := n -> (-1)^n*add(binomial(2*(n-k), n-k)*binomial(2*n-k, k)^2, k=0..n); seq(A245925(n), n=0..20); # Peter Luschny, Aug 17 2014
  • Mathematica
    Table[Sum[Sum[(-1)^(j+k) * Binomial[2*n - k, j + k]^2 * Binomial[j + k, k]^2, {j, 0, 2*n - 2*k}], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Aug 16 2014 after Paul D. Hanna *)
    a[n_] := (-1)^n*HypergeometricPFQ[{-n, -n, n + 1, n + 1}, {1/2, 1, 1}, 1/4];
    Table[a[n], {n, 0, 20}] (* Peter Luschny, Mar 14 2018 *)
  • PARI
    /* By definition: */
    {a(n)=polcoeff(sum(m=0, n, x^m*sum(k=0, m, (-1)^k*binomial(m, k)^2*sum(j=0, k, binomial(k, j)^2*x^j)+x*O(x^n))), n)}
    for(n=0, 20, print1(a(2*n), ", "))
    
  • PARI
    /* From alternate g.f.: */
    {a(n)=local(A=1);A=sum(m=0,n,x^m/(1+x)^(2*m+1)*sum(k=0,m,binomial(m,k)^2*(-x)^k)^2+x*O(x^n));polcoeff(A,n)}
    for(n=0,20,print1(a(2*n),", "))
    
  • PARI
    /* From formula for a(n); printing only nonzero terms: */
    {a(n)=sum(k=0, n\2, sum(j=0, n-2*k, (-1)^(j+k)*binomial(n-k, j+k)^2*binomial(j+k, k)^2))}
    for(n=0, 20, print1(a(2*n), ", "))
    
  • PARI
    /* From formula for a(n) (nonzero terms): */
    {a(n)=sum(k=0, n, sum(j=0, 2*n-2*k, (-1)^(j+k)*binomial(2*n-k,j+k)^2*binomial(j+k, k)^2))}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    /* Formula for a(n), after Peter Luschny and Robert Israel: */
    {a(n) = (-1)^n * sum(k=0,n, binomial(2*k, k) * binomial(n+k, n-k)^2)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    /* Simpler formula for a(n): */
    {a(n) = sum(k=0, n, (-1)^k * binomial(2*k, k)^2 * binomial(n+k, n-k) )}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    /* Using AGM: */
    {a(n)=polcoeff( 1 / agm(1-x, sqrt(1+14*x+x^2 +x*O(x^n))), n)}
    for(n=0,20,print1(a(n),", "))
    
  • Sage
    A245925 = lambda n: (-1)^n*sum(binomial(2*(n-k), n-k)*binomial(2*n-k, k)^2 for k in (0..n))
    [A245925(n) for n in range(21)] # Peter Luschny, Aug 17 2014

Formula

G.f.: Sum_{n>=0} x^n / (1+x)^(2*n+1) * ( Sum_{k=0..n} C(n,k)^2*(-x)^k )^2.
G.f.: 1 / AGM(1-x^2, sqrt(1+14*x^2+x^4)), where AGM(x,y) = AGM((x+y)/2, sqrt(x*y)) is the arithmetic-geometric mean.
a(2*n) = A245926(n)^2.
a(2*n+1) = (-3)*A245927(n)^2.
a(n) = Sum_{k=0..n} Sum_{j=0..2*n-2*k} (-1)^(j+k) * C(2*n-k,j+k)^2 * C(j+k,k)^2.
D-finite with recurrence: n^2*(2*n-3)*a(n) = -(2*n-1)*(13*n^2 - 26*n + 10)*a(n-1) + (2*n-3)*(13*n^2 - 26*n + 10)*a(n-2) + (n-2)^2*(2*n-1)*a(n-3). - Vaclav Kotesovec, Aug 16 2014
a(n) ~ (-1)^n * (2+sqrt(3)) * (7+4*sqrt(3))^n / (4*Pi*n). - Vaclav Kotesovec, Aug 16 2014
a(n) = (-1)^n*Sum_{k=0..n} binomial(2*(n-k), n-k)*binomial(2*n-k, k)^2. - Peter Luschny, Aug 17 2014
a(n) = (-1)^n*binomial(2*n,n)*hyper4F3([-n,-n,-n,-n+1/2],[1,-2*n,-2*n], 4). - Peter Luschny, Aug 17 2014
a(n) = Sum_{k=0..n} (-1)^k * C(2*k, k)^2 * C(n+k, n-k). - Paul D. Hanna, Aug 17 2014
a(n) = (-1)^n*hypergeom([-n, -n, n + 1, n + 1], [1/2, 1, 1], 1/4). - Peter Luschny, Mar 14 2018
a(n) = Legendre_P(n, sqrt(-3))^2. - Peter Bala, Dec 22 2020
G.f.: Sum_{n >= 0} (-1)^n*binomial(2*n,n)^2*x^n/(1-x)^(2*n+1). - Peter Bala, Feb 07 2022
From Peter Bala, Apr 05 2022: (Start)
a(n) = Sum_{k = 0..n} (-1)^(n+k)*binomial(2*n-k,k)*binomial(2*n-2*k,n-k)^2.
a(n) = (-1)^n * Sum_{k = 0..n} binomial(2*k,k)*binomial(n+k,n-k)^2.
a(n) = (-1)^n*binomial(2*n,n)^2*hypergeom([-n,-n,-n,], [-2*n,-n+1/2], 1/4). (End)

A246056 G.f.: Sum_{n>=0} x^n / (1-2*x)^(2*n+1) * [Sum_{k=0..n} C(n,k)^2 * 2^k * x^k] * [Sum_{k=0..n} C(n,k)^2 * 3^k * x^k].

Original entry on oeis.org

1, 3, 16, 99, 681, 4950, 37303, 288399, 2272318, 18167553, 146950227, 1199921310, 9875193549, 81811617237, 681621711306, 5706874227051, 47985527200311, 405002888376840, 3429714479025247, 29130993220171449, 248095567594494634, 2118053534177686959, 18122259456592141785
Offset: 0

Views

Author

Paul D. Hanna, Aug 23 2014

Keywords

Comments

Conjecture: a(n) == 1 (mod 3) when n = 2*A005836(k) for k >= 0, and a(n) == 0 (mod 3) otherwise, where A005836 gives numbers whose base-3 representation contains no 2.

Examples

			G.f.: A(x) = 1 + 3*x + 16*x^2 + 99*x^3 + 681*x^4 + 4950*x^5 + 37303*x^6 + ...
where the g.f. is given by the binomial series identity:
A(x) = 1/(1-2*x) + x/(1-2*x)^3 * (1 + 2*x) * (1 + 3*x)
+ x^2/(1-2*x)^5 * (1 + 2^2*2*x + 4*x^2) * (1 + 2^2*3*x + 9*x^2)
+ x^3/(1-2*x)^7 * (1 + 3^2*2*x + 3^2*4*x^2 + 8*x^3) * (1 + 3^2*3*x + 3^2*9*x^2 + 27*x^3)
+ x^4/(1-2*x)^9 * (1 + 4^2*2*x + 6^2*4*x^2 + 4^2*8*x^3 + 16*x^4) * (1 + 4^2*3*x + 6^2*9*x^2 + 4^2*27*x^3 + 81*x^4)
+ x^5/(1-2*x)^11 * (1 + 5^2*2*x + 10^2*4*x^2 + 10^2*8*x^3 + 5^2*16*x^4 + 32*x^5) * (1 + 5^2*3*x + 10^2*9*x^2 + 10^2*27*x^3 + 5^2*81*x^4 + 243*x^5) + ...
equals the series
A(x) = 1/(1-x) + x/(1-x)^3 * (1 + x) * (2 + 3*x)
+ x^2/(1-x)^5 * (1 + 2^2*x + x^2) * (4 + 2^2*2*3*x + 9*x^2)
+ x^3/(1-x)^7 * (1 + 3^2*x + 3^2*x^2 + x^3) * (8 + 3^2*4*3*x + 3^2*2*9*x^2 + 27*x^3)
+ x^4/(1-x)^9 * (1 + 4^2*x + 6^2*x^2 + 4^2*x^3 + x^4) * (16 + 4^2*8*3*x + 6^2*4*9*x^2 + 4^2*2*27*x^3 + 81*x^4)
+ x^5/(1-x)^11 * (1 + 5^2*x + 10^2*x^2 + 10^2*x^3 + 5^2*x^4 + x^5) * (32 + 5^2*16*3*x + 10^2*8*9*x^2 + 10^2*4*27*x^3 + 5^2*2*81*x^4 + 243*x^5) + ...
We can also express the g.f. by another binomial series identity:
A(x) = 1 + x*(2 + (1+3*x)) + x^2*(4 + 2^2*2*(1+3*x) + (1+2^2*3*x+9*x^2))
+ x^3*(8 + 3^2*4*(1+3*x) + 3^2*2*(1+2^2*3*x+9*x^2) + (1+3^2*3*x+3^2*9*x^2+27*x^3))
+ x^4*(16 + 4^2*8*(1+3*x) + 6^2*4*(1+2^2*3*x+9*x^2) + 4^2*2*(1+3^2*3*x+3^2*9*x^2+27*x^3) + (1+4^2*3*x+6^2*9*x^2+4^2*27*x^3+81*x^4))
+ x^5*(32 + 5^2*16*(1+3*x) + 10^2*8*(1+2^2*3*x+9*x^2) + 10^2*4*(1+3^2*3*x+3^2*9*x^2+27*x^3) + 5^2*2*(1+4^2*3*x+6^2*9*x^2+4^2*27*x^3+81*x^4) + (1+5^2*3*x+10^2*9*x^2+10^2*27*x^3+5^2*81*x^4+243*x^5)) + ...
equals the series
A(x) = 1 + x*(1 + (2+3*x)) + x^2*(1 + 2^2*(2+3*x) + (4+2^2*2*3*x+9*x^2))
+ x^3*(1 + 3^2*(2+3*x) + 3^2*(4+2^2*2*3*x+9*x^2) + (8+3^2*4*3*x+3^2*2*9*x^2+27*x^3))
+ x^4*(1 + 4^2*(2+3*x) + 6^2*(4+2^2*2*3*x+9*x^2) + 4^2*(8+3^2*4*3*x+3^2*2*9*x^2+27*x^3) + (16+4^2*8*3*x+6^2*4*9*x^2+4^2*2*27*x^3+81*x^4))
+ x^5*(1 + 5^2*(2+3*x) + 10^2*(4+2^2*2*3*x+9*x^2) + 10^2*(8+3^2*4*3*x+3^2*2*9*x^2+27*x^3) + 5^2*(16+4^2*8*3*x+6^2*4*9*x^2+4^2*2*27*x^3+81*x^4) + (32+5^2*16*3*x+10^2*8*9*x^2+10^2*4*27*x^3+5^2*2*81*x^4+243*x^5)) + ...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[3^k * Sum[Binomial[n-k, k+j]^2 * Binomial[k+j, j]^2 * 2^j,{j,0,n-2*k}],{k,0,Floor[n/2]}],{n,0,20}] (* Vaclav Kotesovec, Aug 24 2014 *)
  • PARI
    /* By definition: */
    {a(n)=local(A=1); A=sum(m=0, n, x^m/(1-2*x)^(2*m+1) * sum(k=0, m, binomial(m, k)^2 * 2^k * x^k) * sum(k=0, m, binomial(m, k)^2 * 3^k *x^k) +x*O(x^n)); polcoeff(A, n)}
    for(n=0, 25, print1(a(n), ", "))
    
  • PARI
    /* By a binomial identity: */
    {a(n)=local(A=1); A=sum(m=0, n, x^m/(1-x)^(2*m+1) * sum(k=0, m, binomial(m, k)^2*2^(m-k)*3^k*x^k) * sum(k=0, m, binomial(m, k)^2*x^k) +x*O(x^n)); polcoeff(A, n)}
    for(n=0, 25, print1(a(n), ", "))
    
  • PARI
    /* By a binomial identity: */
    {a(n)=polcoeff(sum(m=0, n, x^m*sum(k=0, m, binomial(m, k)^2 * 2^(m-k)* sum(j=0, k, binomial(k, j)^2 * 3^j * x^j)+x*O(x^n))), n)}
    for(n=0, 25, print1(a(n), ", "))
    
  • PARI
    /* By a binomial identity: */
    {a(n)=polcoeff(sum(m=0, n, x^m*sum(k=0, m, binomial(m, k)^2 * sum(j=0, k, binomial(k, j)^2 * 2^(k-j) * 3^j * x^j)+x*O(x^n))), n)}
    for(n=0, 25, print1(a(n), ", "))
    
  • PARI
    /* Formula for a(n): */
    {a(n)=sum(k=0, n\2, sum(j=0, n-2*k, 3^k * binomial(n-k, k+j)^2 * binomial(k+j, j)^2 * 2^j))}
    for(n=0, 25, print1(a(n), ", "))

Formula

G.f.: Sum_{n>=0} x^n / (1-x)^(2*n+1) * [Sum_{k=0..n} C(n,k)^2 * x^k] * [Sum_{k=0..n} C(n,k)^2 * 2^(n-k) * 3^k * x^k].
G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} C(n,k)^2 * Sum_{j=0..k} C(k,j)^2 * 2^(k-j) * 3^j * x^j.
G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} C(n,k)^2 * 2^(n-k) * Sum_{j=0..k} C(k,j)^2 * 3^j * x^j.
a(n) = Sum_{k=0..[n/2]} 3^k * Sum_{j=0..n-2*k} C(n-k, k+j)^2 * C(k+j, j)^2 * 2^j.
Recurrence: (n-5)*(n-4)*(n-2)*n^2*a(n) = 3*(n-5)*(n-4)*(4*n^3 - 12*n^2 + 10*n - 3)*a(n-1) - (n-5)*(n-4)*(n-1)*(26*n^2 - 78*n + 61)*a(n-2) - 3*(n-5)*(n-2)*(8*n^3 - 56*n^2 + 118*n - 79)*a(n-3) + (n-3)*(125*n^4 - 1500*n^3 + 6197*n^2 - 10182*n + 5414)*a(n-4) - 9*(n-4)*(n-1)*(8*n^3 - 88*n^2 + 310*n - 341)*a(n-5) - 9*(n-5)*(n-2)*(n-1)*(26*n^2 - 234*n + 529)*a(n-6) + 81*(n-2)*(n-1)*(4*n^3 - 60*n^2 + 298*n - 489)*a(n-7) - 81*(n-6)^2*(n-4)*(n-2)*(n-1)*a(n-8). - Vaclav Kotesovec, Aug 24 2014
a(n) ~ c * d^n / n, where d = 8.9576182866823126497141284131... is the root of the equation 81 - 324*d + 234*d^2 + 72*d^3 - 125*d^4 + 24*d^5 + 26*d^6 - 12*d^7 + d^8 = 0, and c = 0.455454371861834589008839056170849399984539880764403809033969331822... . - Vaclav Kotesovec, Aug 24 2014

A246423 G.f.: Sum_{n>=0} x^n / (1-3*x)^(2*n+1) * [Sum_{k=0..n} C(n,k)^2 * 2^k * x^k] * [Sum_{k=0..n} C(n,k)^2 * 3^k * x^k].

Original entry on oeis.org

1, 4, 24, 168, 1286, 10440, 88112, 764368, 6766278, 60828024, 553529808, 5086837680, 47127896444, 439608960656, 4124536224864, 38891699480992, 368326082421446, 3501654020899800, 33403335855108368, 319612386771594608, 3066480362268978804, 29493401582426082032, 284301304326376855200
Offset: 0

Views

Author

Paul D. Hanna, Aug 25 2014

Keywords

Comments

a(n) == 2 (mod 4) iff n = 2^k for k>=2, and a(n) == 0 (mod 4) elsewhere except at a(0)=1 (conjecture).

Examples

			G.f.: A(x) = 1 + 4*x + 24*x^2 + 168*x^3 + 1286*x^4 + 10440*x^5 +...
where the g.f. is given by the binomial series identity:
A(x) = 1/(1-3*x) + x/(1-3*x)^3 * (1 + 2*x) * (1 + 3*x)
+ x^2/(1-3*x)^5 * (1 + 2^2*2*x + 4*x^2) * (1 + 2^2*3*x + 9*x^2)
+ x^3/(1-3*x)^7 * (1 + 3^2*2*x + 3^2*4*x^2 + 8*x^3) * (1 + 3^2*3*x + 3^2*9*x^2 + 27*x^3)
+ x^4/(1-3*x)^9 * (1 + 4^2*2*x + 6^2*4*x^2 + 4^2*8*x^3 + 16*x^4) * (1 + 4^2*3*x + 6^2*9*x^2 + 4^2*27*x^3 + 81*x^4)
+ x^5/(1-3*x)^11 * (1 + 5^2*2*x + 10^2*4*x^2 + 10^2*8*x^3 + 5^2*16*x^4 + 32*x^5) * (1 + 5^2*3*x + 10^2*9*x^2 + 10^2*27*x^3 + 5^2*81*x^4 + 243*x^5) +...
equals the series
A(x) = 1/(1-x) + x/(1-x)^3 * (1 + x) * (3+2*x)
+ x^2/(1-x)^5 * (1 + 2^2*x + x^2) * (9+2^2*3*2*x+4*x^2)
+ x^3/(1-x)^7 * (1 + 3^2*x + 3^2*x^2 + x^3) * (27+3^2*9*2*x+3^2*4*3*x^2+8*x^3)
+ x^4/(1-x)^9 * (1 + 4^2*x + 6^2*x^2 + 4^2*x^3 + x^4) * (81+4^2*27*2*x+6^2*9*4*x^2+4^2*3*8*x^3+16*x^4)
+ x^5/(1-x)^11 * (1 + 5^2*x + 10^2*x^2 + 10^2*x^3 + 5^2*x^4 + x^5) * (243+5^2*81*2*x+10^2*27*4*x^2+10^2*9*16*x^3+5^2*3*18*x^4+32*x^5) +...
We can also express the g.f. by another binomial series identity:
A(x) = 1 + x*(3 + (1+2*x)) + x^2*(9 + 2^2*3*(1+2*x) + (1+2^2*2*x+4*x^2))
+ x^3*(27 + 3^2*9*(1+2*x) + 3^2*3*(1+2^2*2*x+4*x^2) + (1+3^2*2*x+3^2*4*x^2+8*x^3))
+ x^4*(81 + 4^2*27*(1+2*x) + 6^2*9*(1+2^2*2*x+4*x^2) + 4^2*3*(1+3^2*2*x+3^2*4*x^2+8*x^3) + (1+4^2*2*x+6^2*4*x^2+4^2*8*x^3+16*x^4))
+ x^5*(243 + 5^2*81*(1+2*x) + 10^2*27*(1+2^2*2*x+4*x^2) + 10^2*9*(1+3^2*2*x+3^2*4*x^2+8*x^3) + 5^2*3*(1+4^2*2*x+6^2*4*x^2+4^2*8*x^3+16*x^4) + (1+5^2*2*x+10^2*4*x^2+10^2*8*x^3+5^2*16*x^4+32*x^5)) +...
equals the series
A(x) = 1 + x*(1 + (3+2*x)) + x^2*(1 + 2^2*(3+2*x) + (9+2^2*3*2*x+4*x^2))
+ x^3*(1 + 3^2*(3+2*x) + 3^2*(9+2^2*3*2*x+4*x^2) + (27+3^2*9*2*x+3^2*4*3*x^2+8*x^3))
+ x^4*(1 + 4^2*(3+2*x) + 6^2*(9+2^2*3*2*x+4*x^2) + 4^2*(27+3^2*9*2*x+3^2*4*3*x^2+8*x^3) + (81+4^2*27*2*x+6^2*9*4*x^2+4^2*3*8*x^3+16*x^4))
+ x^5*(1 + 5^2*(3+2*x) + 10^2*(9+2^2*3*2*x+4*x^2) + 10^2*(27+3^2*9*2*x+3^2*4*3*x^2+8*x^3) + 5^2*(81+4^2*27*2*x+6^2*9*4*x^2+4^2*3*8*x^3+16*x^4) + (243+5^2*81*2*x+10^2*27*4*x^2+10^2*9*16*x^3+5^2*3*18*x^4+32*x^5)) +...
		

Crossrefs

Programs

  • PARI
    /* By definition: */
    {a(n)=local(A=1); A=sum(m=0, n, x^m/(1-3*x)^(2*m+1) * sum(k=0, m, binomial(m, k)^2 * 2^k * x^k) * sum(k=0, m, binomial(m, k)^2 * 3^k * x^k) +x*O(x^n)); polcoeff(A, n)}
    for(n=0, 25, print1(a(n), ", "))
    
  • PARI
    /* By a binomial identity: */
    {a(n)=local(A=1); A=sum(m=0, n, x^m/(1-x)^(2*m+1) * sum(k=0, m, binomial(m, k)^2 * 3^(m-k) * 2^k * x^k) * sum(k=0, m, binomial(m, k)^2 * x^k) +x*O(x^n)); polcoeff(A, n)}
    for(n=0, 25, print1(a(n), ", "))
    
  • PARI
    /* By a binomial identity: */
    {a(n)=polcoeff(sum(m=0, n, x^m*sum(k=0, m, binomial(m, k)^2 * 3^(m-k) * sum(j=0, k, binomial(k, j)^2 * 2^j * x^j)+x*O(x^n))), n)}
    for(n=0, 25, print1(a(n), ", "))
    
  • PARI
    /* By a binomial identity: */
    {a(n)=polcoeff(sum(m=0, n, x^m*sum(k=0, m, binomial(m, k)^2 * sum(j=0, k, binomial(k, j)^2 * 3^(k-j) * 2^j * x^j)+x*O(x^n))), n)}
    for(n=0, 25, print1(a(n), ", "))
    
  • PARI
    /* Formula for a(n): */
    {a(n)=sum(k=0, n\2, sum(j=0, n-2*k, 2^k * binomial(n-k, k+j)^2 * binomial(k+j, j)^2 * 3^j))}
    for(n=0, 25, print1(a(n), ", "))

Formula

G.f.: Sum_{n>=0} x^n / (1-x)^(2*n+1) * [Sum_{k=0..n} C(n,k)^2 * x^k] * [Sum_{k=0..n} C(n,k)^2 * 3^(n-k) * 2^k * x^k].
G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} C(n,k)^2 * Sum_{j=0..k} C(k,j)^2 * 3^(k-j) * 2^j * x^j.
G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} C(n,k)^2 * 3^(n-k) * Sum_{j=0..k} C(k,j)^2 * 2^j * x^j.
a(n) = Sum_{k=0..[n/2]} 2^k * Sum_{j=0..n-2*k} C(n-k, k+j)^2 * C(k+j, j)^2 * 3^j.
Recurrence: (n-5)*(n-4)*(n-2)*n^2*a(n) = 4*(n-5)*(n-4)*(4*n^3 - 12*n^2 + 10*n - 3)*a(n-1) - 16*(n-5)*(n-4)*(n-1)*(2*n-3)^2*a(n-2) + 8*(n-5)*(n-2)*(4*n^3 - 28*n^2 + 54*n - 27)*a(n-3) + 24*(n-3)*(5*n^4 - 60*n^3 + 248*n^2 - 408*n + 216)*a(n-4) + 16*(n-4)*(n-1)*(4*n^3 - 44*n^2 + 150*n - 153)*a(n-5) - 64*(n-5)*(n-2)*(n-1)*(2*n-9)^2*a(n-6) + 32*(n-2)*(n-1)*(4*n^3 - 60*n^2 + 298*n - 489)*a(n-7) - 16*(n-6)^2*(n-4)*(n-2)*(n-1)*a(n-8). - Vaclav Kotesovec, Aug 26 2014
a(n) ~ c * d^n / n, where d = 10.094399065494857710014687346... is the root of the equation 16 - 128*d + 256*d^2 - 64*d^3 - 120*d^4 - 32*d^5 + 64*d^6 - 16*d^7 + d^8 = 0, and c = 0.5132545324612697424702223429844481717... . - Vaclav Kotesovec, Aug 26 2014

A243948 G.f.: Sum_{n>=0} x^n / (1-x)^(2*n+1) * [Sum_{k=0..n} C(n,k)^2 * x^k] * [Sum_{k=0..n} C(n,k)^2 * 2^k * x^k].

Original entry on oeis.org

1, 2, 8, 36, 182, 964, 5296, 29832, 171238, 997244, 5874992, 34937400, 209392796, 1263258760, 7664233696, 46726270992, 286089651718, 1758215706476, 10841476837424, 67049791851672, 415784950498964, 2584585251386296, 16101542183281312, 100511325748165488, 628579719997550044
Offset: 0

Views

Author

Paul D. Hanna, Aug 16 2014

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 8*x^2 + 36*x^3 + 182*x^4 + 964*x^5 + 5296*x^6 +...
where the g.f. is given by the binomial series:
A(x) = 1/(1-x) + x/(1-x)^3*(1+x) * (1+2*x)
+ x^2/(1-x)^5*(1 + 2^2*x + x^2) * (1 + 2^2*2*x + 4*x^2)
+ x^3/(1-x)^7*(1 + 3^2*x + 3^2*x^2 + x^3) * (1 + 3^2*2*x + 3^2*4*x^2 + 8*x^3)
+ x^4/(1-x)^9*(1 + 4^2*x + 6^2*x^2 + 4^2*x^3 + x^4) * (1 + 4^2*2*x + 6^2*4*x^2 + 4^2*8*x^3 + 16*x^4)
+ x^5/(1-x)^11*(1 + 5^2*x + 10^2*x^2 + 10^2*x^3 + 5^2*x^4 + x^5) * (1 + 5^2*2*x + 10^2*4*x^2 + 10^2*8*x^3 + 5^2*16*x^4 + 32*x^5) +...
We can also express the g.f. by the binomial series identity:
A(x) = 1 + x*(1 + (1+2*x)) + x^2*(1 + 2^2*(1+2*x) + (1+2^2*2*x+4*x^2))
+ x^3*(1 + 3^2*(1+2*x) + 3^2*(1+2^2*2*x+4*x^2) + (1+3^2*2*x+3^2*4*x^2+8*x^3))
+ x^4*(1 + 4^2*(1+2*x) + 6^2*(1+2^2*2*x+4*x^2) + 4^2*(1+3^2*2*x+3^2*4*x^2+8*x^3) + (1+4^2*2*x+6^2*4*x^2+4^2*8*x^3+16*x^4))
+ x^5*(1 + 5^2*(1+2*x) + 10^2*(1+2^2*2*x+4*x^2) + 10^2*(1+3^2*2*x+3^2*4*x^2+8*x^3) + 5^2*(1+4^2*2*x+6^2*4*x^2+4^2*8*x^3+16*x^4) + (1+5^2*2*x+10^2*4*x^2+10^2*8*x^3+5^2*16*x^4+32*x^5)) +...
		

Crossrefs

Programs

  • PARI
    /* By definition: */
    {a(n)=local(A=1); A=sum(m=0, n, x^m/(1-x)^(2*m+1) * sum(k=0, m, binomial(m, k)^2*x^k) * sum(k=0, m, binomial(m, k)^2*2^k*x^k) +x*O(x^n)); polcoeff(A, n)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    /* By a binomial identity: */
    {a(n)=polcoeff(sum(m=0, n, x^m*sum(k=0, m, binomial(m, k)^2*sum(j=0, k, binomial(k, j)^2*2^j*x^j)+x*O(x^n))), n)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    /* Formula for a(n): */
    {a(n)=sum(k=0, n\2, sum(j=0, n-2*k, binomial(n-k, k+j)^2*binomial(k+j, k)^2*2^k))}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} C(n,k)^2 * Sum_{j=0..k} C(k,j)^2 * 2^j * x^j.
a(n) = Sum_{k=0..[n/2]} Sum_{j=0..n-2*k} C(n-k, k+j)^2 * C(k+j, k)^2 * 2^k.
Recurrence: (n-3)*(n-2)*n^2*a(n) = 2*(n-3)*(4*n^3 - 12*n^2 + 10*n - 3)*a(n-1) - 2*(n-1)*(5*n^3 - 30*n^2 + 58*n - 38)*a(n-2) + 8*(n-2)*a(n-3) + 4*(n-3)*(5*n^3 - 30*n^2 + 58*n - 34)*a(n-4) - 8*(n-1)*(4*n^3 - 36*n^2 + 106*n - 101)*a(n-5) + 8*(n-4)^2*(n-2)*(n-1)*a(n-6). - Vaclav Kotesovec, Aug 17 2014
a(n) ~ sqrt(c) * d^n / (2^(3/2)*Pi*n), where d = 2 + sqrt(2) + 2*sqrt(1+sqrt(2)) = 6.52176151043316966349... is the root of the equation 4 - 16*d + 12*d^2 - 8*d^3 + d^4 = 0, and c = 4 + 5/sqrt(2) + 2*sqrt(7+5*sqrt(2)) = 15.0378183078640521... is the root of the equation 1 - 32*c + 60*c^2 - 64*c^3 + 4*c^4 = 0. - Vaclav Kotesovec, Aug 17 2014

Extensions

Minor edits by Vaclav Kotesovec, Nov 05 2014

A246539 G.f.: Sum_{n>=0} 3^n * x^n / (1-x)^(2*n+1) * [Sum_{k=0..n} C(n,k)^2 * x^k]^2.

Original entry on oeis.org

1, 4, 25, 184, 1489, 12796, 114241, 1047568, 9796057, 92989876, 893250193, 8663461000, 84697699297, 833616713164, 8251811812465, 82088310375904, 820140832103881, 8225191769615620, 82768982623011841, 835404195075128536, 8454743911307336857, 85775961307556225596, 872156269935215409577
Offset: 0

Views

Author

Paul D. Hanna, Aug 28 2014

Keywords

Comments

a(n) == 1 (mod 3) for n>=0.

Examples

			G.f.: A(x) = 1 + 4*x + 25*x^2 + 184*x^3 + 1489*x^4 + 12796*x^5 +...
where
A(x) = 1/(1-x) + 3*x/(1-x)^3*(1+x)^2
+ 3^2*x^2/(1-x)^5*(1 + 2^2*x + x^2)^2
+ 3^3*x^3/(1-x)^7*(1 + 3^2*x + 3^2*x^2 + x^3)^2
+ 3^4*x^4/(1-x)^9*(1 + 4^2*x + 6^2*x^2 + 4^2*x^3 + x^4)^2
+ 3^5*x^5/(1-x)^11*(1 + 5^2*x + 10^2*x^2 + 10^2*x^3 + 5^2*x^4 + x^5)^2
+ 3^6*x^6/(1-x)^13*(1 + 6^2*x + 15^2*x^2 + 20^2*x^3 + 15^2*x^4 + 6^2*x^5 + x^6)^2 +...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[3^k * Sum[Binomial[n-k, k+j]^2 * Binomial[k+j, j]^2 * 3^j,{j,0,n-2*k}],{k,0,Floor[n/2]}],{n,0,20}] (* Vaclav Kotesovec, Nov 05 2014 *)
  • PARI
    /* By definition: */
    {a(n)=local(A=1); A=sum(m=0, n, 3^m*x^m/(1-x)^(2*m+1) * sum(k=0, m, binomial(m, k)^2 * x^k)^2 +x*O(x^n)); polcoeff(A, n)}
    for(n=0, 25, print1(a(n), ", "))
    
  • PARI
    /* By a binomial identity: */
    {a(n)=local(A=1); A=sum(m=0, n, x^m/(1-3*x)^(2*m+1) * sum(k=0, m, binomial(m, k)^2 * 3^k * x^k)^2 +x*O(x^n)); polcoeff(A, n)}
    for(n=0, 25, print1(a(n), ", "))
    
  • PARI
    /* By a binomial identity: */
    {a(n)=polcoeff(sum(m=0, n, x^m*sum(k=0, m, binomial(m, k)^2 * 3^k * sum(j=0, k, binomial(k, j)^2 * x^j)+x*O(x^n))), n)}
    for(n=0, 25, print1(a(n), ", "))
    
  • PARI
    /* By a binomial identity: */
    {a(n)=polcoeff(sum(m=0, n, x^m*sum(k=0, m, binomial(m, k)^2 * 3^(m-k) * sum(j=0, k, binomial(k, j)^2 * 3^j * x^j)+x*O(x^n))), n)}
    for(n=0, 25, print1(a(n), ", "))
    
  • PARI
    /* By a formula for a(n): */
    {a(n)=sum(k=0, n\2, sum(j=0, n-2*k, 3^k * binomial(n-k, k+j)^2 * binomial(k+j, j)^2 * 3^j))}
    for(n=0, 25, print1(a(n), ", "))

Formula

G.f.: Sum_{n>=0} x^n / (1-3*x)^(2*n+1) * [Sum_{k=0..n} C(n,k)^2 * 3^k * x^k]^2.
G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} C(n,k)^2 * 3^k * Sum_{j=0..k} C(k,j)^2 * x^j.
G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} C(n,k)^2 * 3^(n-k) * Sum_{j=0..k} C(k,j)^2 * 3^j * x^j.
a(n) = Sum_{k=0..[n/2]} 3^k * Sum_{j=0..n-2*k} C(n-k, k+j)^2 * C(k+j, j)^2 * 3^j.
Recurrence: (n-3)*n^2*a(n) = 4*(n-3)*(3*n^2 - 3*n + 1)*a(n-1) - 3*(n-1)*(3*n^2 - 12*n + 8)*a(n-2) - 8*(n-2)*(7*n^2 - 28*n + 24)*a(n-3) - 9*(n-3)*(3*n^2 - 12*n + 8)*a(n-4) + 36*(n-1)*(3*n^2 - 21*n + 37)*a(n-5) - 27*(n-4)^2*(n-1)*a(n-6). - Vaclav Kotesovec, Nov 05 2014
a(n) ~ sqrt(3) * (2 + 2*sqrt(3) + sqrt(13+8*sqrt(3)))^(n+1) / (12*Pi*n). - Vaclav Kotesovec, Nov 05 2014

A246538 G.f.: Sum_{n>=0} 2^n * x^n / (1-x)^(2*n+1) * [Sum_{k=0..n} C(n,k)^2 * x^k]^2.

Original entry on oeis.org

1, 3, 15, 87, 559, 3807, 26919, 195399, 1445967, 10859967, 82527687, 633165255, 4896345487, 38117454303, 298435452135, 2348094847047, 18554434810831, 147171478237695, 1171272947140359, 9349653181797063, 74834845484454927, 600441007306747167, 4828337830880795943, 38904633251921442375
Offset: 0

Views

Author

Paul D. Hanna, Aug 28 2014

Keywords

Comments

a(n) == 1 (mod 3) iff n = 4*A005836(k) for k>=0, and a(n) == 0 (mod 3) otherwise, where A005836 gives numbers n whose base 3 representation contains no 2.

Examples

			G.f.: A(x) = 1 + 3*x + 15*x^2 + 87*x^3 + 559*x^4 + 3807*x^5 + 26919*x^6 +...
where
A(x) = 1/(1-x) + 2*x/(1-x)^3*(1+x)^2
+ 2^2*x^2/(1-x)^5*(1 + 2^2*x + x^2)^2
+ 2^3*x^3/(1-x)^7*(1 + 3^2*x + 3^2*x^2 + x^3)^2
+ 2^4*x^4/(1-x)^9*(1 + 4^2*x + 6^2*x^2 + 4^2*x^3 + x^4)^2
+ 2^5*x^5/(1-x)^11*(1 + 5^2*x + 10^2*x^2 + 10^2*x^3 + 5^2*x^4 + x^5)^2
+ 2^6*x^6/(1-x)^13*(1 + 6^2*x + 15^2*x^2 + 20^2*x^3 + 15^2*x^4 + 6^2*x^5 + x^6)^2 +...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[2^k * Sum[Binomial[n-k, k+j]^2 * Binomial[k+j, j]^2 * 2^j,{j,0,n-2*k}],{k,0,Floor[n/2]}],{n,0,20}] (* Vaclav Kotesovec, Nov 05 2014 *)
  • PARI
    /* By definition: */
    {a(n)=local(A=1); A=sum(m=0, n, 2^m*x^m/(1-x)^(2*m+1) * sum(k=0, m, binomial(m, k)^2 * x^k)^2 +x*O(x^n)); polcoeff(A, n)}
    for(n=0, 25, print1(a(n), ", "))
    
  • PARI
    /* By a binomial identity: */
    {a(n)=local(A=1); A=sum(m=0, n, x^m/(1-2*x)^(2*m+1) * sum(k=0, m, binomial(m, k)^2 * 2^k * x^k)^2 +x*O(x^n)); polcoeff(A, n)}
    for(n=0, 25, print1(a(n), ", "))
    
  • PARI
    /* By a binomial identity: */
    {a(n)=polcoeff(sum(m=0, n, x^m*sum(k=0, m, binomial(m, k)^2 * 2^k * sum(j=0, k, binomial(k, j)^2 * x^j)+x*O(x^n))), n)}
    for(n=0, 25, print1(a(n), ", "))
    
  • PARI
    /* By a binomial identity: */
    {a(n)=polcoeff(sum(m=0, n, x^m*sum(k=0, m, binomial(m, k)^2 * 2^(m-k) * sum(j=0, k, binomial(k, j)^2 * 2^j * x^j)+x*O(x^n))), n)}
    for(n=0, 25, print1(a(n), ", "))
    
  • PARI
    /* By a formula for a(n): */
    {a(n)=sum(k=0, n\2, sum(j=0, n-2*k, 2^k * binomial(n-k, k+j)^2 * binomial(k+j, j)^2 * 2^j))}
    for(n=0, 25, print1(a(n), ", "))

Formula

G.f.: Sum_{n>=0} x^n / (1-2*x)^(2*n+1) * [Sum_{k=0..n} C(n,k)^2 * 2^k * x^k]^2.
G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} C(n,k)^2 * 2^k * Sum_{j=0..k} C(k,j)^2 * x^j.
G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} C(n,k)^2 * 2^(n-k) * Sum_{j=0..k} C(k,j)^2 * 2^j * x^j.
a(n) = Sum_{k=0..[n/2]} 2^k * Sum_{j=0..n-2*k} C(n-k, k+j)^2 * C(k+j, j)^2 * 2^j.
D-finite with recurrence: (n-4)*(n-1)^2*a(n) = 3*(n-4)*(3*n^2 - 9*n + 7)*a(n-1) - (n-2)*(n^2 - 6*n + 6)*a(n-2) - 3*(n-3)*(11*n^2 - 66*n + 92)*a(n-3) - 2*(n-4)*(n^2 - 6*n + 6)*a(n-4) + 12*(n-2)*(3*n^2 - 27*n + 61)*a(n-5) - 8*(n-5)^2*(n-2)*a(n-6). - Vaclav Kotesovec, Nov 05 2014, for offset 1.
a(n) ~ ((3 + 4*sqrt(2) + sqrt(33+24*sqrt(2))))^n / (Pi *n * 2^(n+5/2)). - Vaclav Kotesovec, Nov 05 2014

A246540 G.f.: Sum_{n>=0} 4^n * x^n / (1-x)^(2*n+1) * [Sum_{k=0..n} C(n,k)^2 * x^k]^2.

Original entry on oeis.org

1, 5, 37, 325, 3125, 31925, 339077, 3700645, 41200981, 465736725, 5328229797, 61552244485, 716791570549, 8403794763125, 99096946864325, 1174370518273125, 13977636401394069, 167001257979441365, 2002052157653251557, 24073717683854557125, 290261630170911545525, 3508332484300450371125
Offset: 0

Views

Author

Paul D. Hanna, Aug 28 2014

Keywords

Comments

a(n) == 5 (mod 16) for n>=1.

Examples

			G.f.: A(x) = 1 + 5*x + 37*x^2 + 325*x^3 + 3125*x^4 + 31925*x^5 +...
where
A(x) = 1/(1-x) + 4*x/(1-x)^3*(1+x)^2
+ 4^2*x^2/(1-x)^5*(1 + 2^2*x + x^2)^2
+ 4^3*x^3/(1-x)^7*(1 + 3^2*x + 3^2*x^2 + x^3)^2
+ 4^4*x^4/(1-x)^9*(1 + 4^2*x + 6^2*x^2 + 4^2*x^3 + x^4)^2
+ 4^5*x^5/(1-x)^11*(1 + 5^2*x + 10^2*x^2 + 10^2*x^3 + 5^2*x^4 + x^5)^2
+ 4^6*x^6/(1-x)^13*(1 + 6^2*x + 15^2*x^2 + 20^2*x^3 + 15^2*x^4 + 6^2*x^5 + x^6)^2 +...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[4^k * Sum[Binomial[n-k, k+j]^2 * Binomial[k+j, j]^2 * 4^j,{j,0,n-2*k}],{k,0,Floor[n/2]}],{n,0,20}] (* Vaclav Kotesovec, Nov 05 2014 *)
  • PARI
    /* By definition: */
    {a(n)=local(A=1); A=sum(m=0, n, 4^m*x^m/(1-x)^(2*m+1) * sum(k=0, m, binomial(m, k)^2 * x^k)^2 +x*O(x^n)); polcoeff(A, n)}
    for(n=0, 25, print1(a(n), ", "))
    
  • PARI
    /* By a binomial identity: */
    {a(n)=local(A=1); A=sum(m=0, n, x^m/(1-4*x)^(2*m+1) * sum(k=0, m, binomial(m, k)^2 * 4^k * x^k)^2 +x*O(x^n)); polcoeff(A, n)}
    for(n=0, 25, print1(a(n), ", "))
    
  • PARI
    /* By a binomial identity: */
    {a(n)=polcoeff(sum(m=0, n, x^m*sum(k=0, m, binomial(m, k)^2 * 4^k * sum(j=0, k, binomial(k, j)^2 * x^j)+x*O(x^n))), n)}
    for(n=0, 25, print1(a(n), ", "))
    
  • PARI
    /* By a binomial identity: */
    {a(n)=polcoeff(sum(m=0, n, x^m*sum(k=0, m, binomial(m, k)^2 * 4^(m-k) * sum(j=0, k, binomial(k, j)^2 * 4^j * x^j)+x*O(x^n))), n)}
    for(n=0, 25, print1(a(n), ", "))
    
  • PARI
    /* By a formula for a(n): */
    {a(n)=sum(k=0, n\2, sum(j=0, n-2*k, 4^k * binomial(n-k, k+j)^2 * binomial(k+j, j)^2 * 4^j))}
    for(n=0, 25, print1(a(n), ", "))

Formula

G.f.: Sum_{n>=0} x^n / (1-4*x)^(2*n+1) * [Sum_{k=0..n} C(n,k)^2 * 4^k * x^k]^2.
G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} C(n,k)^2 * 4^k * Sum_{j=0..k} C(k,j)^2 * x^j.
G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} C(n,k)^2 * 4^(n-k) * Sum_{j=0..k} C(k,j)^2 * 4^j * x^j.
a(n) = Sum_{k=0..[n/2]} 4^k * Sum_{j=0..n-2*k} C(n-k, k+j)^2 * C(k+j, j)^2 * 4^j.
Recurrence: (n-3)*n^2*a(n) = 5*(n-3)*(3*n^2 - 3*n + 1)*a(n-1) - (n-1)*(23*n^2 - 92*n + 65)*a(n-2) - 5*(n-2)*(15*n^2 - 60*n + 53)*a(n-3) - 4*(n-3)*(23*n^2 - 92*n + 65)*a(n-4) + 80*(n-1)*(3*n^2 - 21*n + 37)*a(n-5) - 64*(n-4)^2*(n-1)*a(n-6). - Vaclav Kotesovec, Nov 05 2014
a(n) ~ ((13+3*sqrt(17))/2)^(n+1) / (8*Pi*n). - Vaclav Kotesovec, Nov 05 2014

A246813 G.f.: Sum_{n>=0} x^n / (1-3*x)^(2*n+1) * [Sum_{k=0..n} C(n,k)^2 * x^k] * [Sum_{k=0..n} C(n,k)^2 * 3^k * x^k].

Original entry on oeis.org

1, 4, 23, 152, 1085, 8156, 63579, 509136, 4161649, 34566580, 290798551, 2471871784, 21191824645, 182984610220, 1589620392835, 13881368684128, 121767703088377, 1072382299895428, 9477296423786207, 84017470425706040, 746903374745524629, 6656552616997851036, 59459592374756968323
Offset: 0

Views

Author

Paul D. Hanna, Sep 03 2014

Keywords

Examples

			G.f.: A(x) = 1 + 4*x + 23*x^2 + 152*x^3 + 1085*x^4 + 8156*x^5 +...
where the g.f. is given by the binomial series:
A(x) = 1/(1-3*x) + x/(1-3*x)^3 * (1+x) * (1+3*x)
+ x^2/(1-3*x)^5 * (1 + 2^2*x + x^2) * (1 + 2^2*3*x + 9*x^2)
+ x^3/(1-3*x)^7 * (1 + 3^2*x + 3^2*x^2 + x^3) * (1 + 3^2*3*x + 3^2*9*x^2 + 27*x^3)
+ x^4/(1-3*x)^9 * (1 + 4^2*x + 6^2*x^2 + 4^2*x^3 + x^4) * (1 + 4^2*3*x + 6^2*9*x^2 + 4^2*27*x^3 + 81*x^4)
+ x^5/(1-3*x)^11 * (1 + 5^2*x + 10^2*x^2 + 10^2*x^3 + 5^2*x^4 + x^5) * (1 + 5^2*3*x + 10^2*9*x^2 + 10^2*27*x^3 + 5^2*81*x^4 + 243*x^5) +...
We can also express the g.f. by the binomial series:
A(x) = 1 + x*(1 + (3+x)) + x^2*(1 + 2^2*(3+x) + (9+2^2*3*x+x^2))
+ x^3*(1 + 3^2*(3+x) + 3^2*(9+2^2*3*x+x^2) + (27+3^2*9*x+3^2*3*x^2+x^3))
+ x^4*(1 + 4^2*(3+x) + 6^2*(9+2^2*3*x+x^2) + 4^2*(27+3^2*9*x+3^2*3*x^2+x^3) + (81+4^2*27*x+6^2*9*x^2+4^2*3*x^3+x^4))
+ x^5*(1 + 5^2*(3+x) + 10^2*(9+2^2*3*x+x^2) + 10^2*(27+3^2*9*x+3^2*3*x^2+x^3) + 5^2*(81+4^2*27*x+6^2*9*x^2+4^2*3*x^3+x^4) + (243+5^2*81*x+10^2*27*x^2+10^2*9*x^3+5^2*3*x^4+x^5)) +...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[Binomial[n-k, k+j]^2 * Binomial[k+j, j]^2 * 3^j,{j,0,n-2*k}],{k,0,Floor[n/2]}],{n,0,20}] (* Vaclav Kotesovec, Oct 04 2014 *)
  • PARI
    /* By definition: */
    {a(n)=local(A=1); A=sum(m=0, n, x^m/(1-3*x)^(2*m+1) * sum(k=0, m, binomial(m, k)^2 * x^k) * sum(k=0, m, binomial(m, k)^2 * 3^k * x^k) +x*O(x^n)); polcoeff(A, n)}
    for(n=0, 25, print1(a(n), ", "))
    
  • PARI
    /* By a binomial identity: */
    {a(n)=polcoeff(sum(m=0, n, x^m*sum(k=0, m, binomial(m, k)^2 * 3^(m-k) * sum(j=0, k, binomial(k, j)^2 * x^j)+x*O(x^n))), n)}
    for(n=0, 25, print1(a(n), ", "))
    
  • PARI
    /* Formula for a(n): */
    {a(n)=sum(k=0, n\2, sum(j=0, n-2*k, binomial(n-k, k+j)^2 * binomial(k+j, j)^2 * 3^j))}
    for(n=0, 25, print1(a(n), ", "))

Formula

G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} C(n,k)^2 * 3^(n-k) * Sum_{j=0..k} C(k,j)^2 * x^j.
a(n) = Sum_{k=0..[n/2]} Sum_{j=0..n-2*k} C(n-k, k+j)^2 * C(k+j, j)^2 * 3^j.
a(n) ~ sqrt(12 + 23/sqrt(3) + 2*sqrt(80 + 46*sqrt(3))) * (3 + sqrt(3) + sqrt(11 + 6*sqrt(3)))^n / (4*Pi*n). - Vaclav Kotesovec, Oct 04 2014

A246812 G.f.: Sum_{n>=0} x^n / (1-x)^(2*n+1) * [Sum_{k=0..n} C(n,k)^2 * x^k] * [Sum_{k=0..n} C(n,k)^2 * 3^k * x^k].

Original entry on oeis.org

1, 2, 9, 44, 241, 1374, 8145, 49512, 306729, 1927802, 12256753, 78661620, 508786129, 3312561638, 21688815729, 142699137072, 942873631497, 6253352120322, 41611854129585, 277723513754364, 1858529465302329, 12467403845702526, 83817799189753785, 564633483609422808, 3810607016379076521
Offset: 0

Views

Author

Paul D. Hanna, Sep 03 2014

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 9*x^2 + 44*x^3 + 241*x^4 + 1374*x^5 + 8145*x^6 +...
where the g.f. is given by the binomial series:
A(x) = 1/(1-x) + x/(1-x)^3*(1+x) * (1+3*x)
+ x^2/(1-x)^5*(1 + 2^2*x + x^2) * (1 + 2^2*3*x + 9*x^2)
+ x^3/(1-x)^7*(1 + 3^2*x + 3^2*x^2 + x^3) * (1 + 3^2*3*x + 3^2*9*x^2 + 27*x^3)
+ x^4/(1-x)^9*(1 + 4^2*x + 6^2*x^2 + 4^2*x^3 + x^4) * (1 + 4^2*3*x + 6^2*9*x^2 + 4^2*27*x^3 + 81*x^4)
+ x^5/(1-x)^11*(1 + 5^2*x + 10^2*x^2 + 10^2*x^3 + 5^2*x^4 + x^5) * (1 + 5^2*3*x + 10^2*9*x^2 + 10^2*27*x^3 + 5^2*81*x^4 + 243*x^5) +...
We can also express the g.f. by the binomial series identity:
A(x) = 1 + x*(1 + (1+3*x)) + x^2*(1 + 2^2*(1+3*x) + (1+2^2*3*x+9*x^2))
+ x^3*(1 + 3^2*(1+3*x) + 3^2*(1+2^2*3*x+9*x^2) + (1+3^2*3*x+3^2*9*x^2+27*x^3))
+ x^4*(1 + 4^2*(1+3*x) + 6^2*(1+2^2*3*x+9*x^2) + 4^2*(1+3^2*3*x+3^2*9*x^2+27*x^3) + (1+4^2*3*x+6^2*9*x^2+4^2*27*x^3+81*x^4))
+ x^5*(1 + 5^2*(1+3*x) + 10^2*(1+2^2*3*x+9*x^2) + 10^2*(1+3^2*3*x+3^2*9*x^2+27*x^3) + 5^2*(1+4^2*3*x+6^2*9*x^2+4^2*27*x^3+81*x^4) + (1+5^2*3*x+10^2*9*x^2+10^2*27*x^3+5^2*81*x^4+243*x^5)) +...
		

Crossrefs

Programs

  • PARI
    /* By definition: */
    {a(n)=local(A=1); A=sum(m=0, n, x^m/(1-x)^(2*m+1) * sum(k=0, m, binomial(m, k)^2 * x^k) * sum(k=0, m, binomial(m, k)^2 * 3^k * x^k) +x*O(x^n)); polcoeff(A, n)}
    for(n=0, 25, print1(a(n), ", "))
    
  • PARI
    /* By a binomial identity: */
    {a(n)=polcoeff(sum(m=0, n, x^m*sum(k=0, m, binomial(m, k)^2 * sum(j=0, k, binomial(k, j)^2 * 3^j * x^j)+x*O(x^n))), n)}
    for(n=0, 25, print1(a(n), ", "))
    
  • PARI
    /* Formula for a(n): */
    {a(n)=sum(k=0, n\2, 3^k * sum(j=0, n-2*k, binomial(n-k, k+j)^2 * binomial(k+j, j)^2))}
    for(n=0, 25, print1(a(n), ", "))

Formula

G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} C(n,k)^2 * Sum_{j=0..k} C(k,j)^2 * 3^j * x^j.
a(n) = Sum_{k=0..[n/2]} 3^k * Sum_{j=0..n-2*k} C(n-k, k+j)^2 * C(k+j, j)^2.

A249921 G.f.: Sum_{n>=0} x^n / (1-2*x)^(2*n+1) * [Sum_{k=0..n} C(n,k)^2 * 2^k * x^k] * [Sum_{k=0..n} C(n,k)^2 * 4^k * x^k].

Original entry on oeis.org

1, 3, 17, 111, 805, 6147, 48641, 394863, 3266629, 27421395, 232867889, 1996302447, 17248208485, 150013649955, 1312111499105, 11532737017839, 101799869875717, 901975446062451, 8018470050567953, 71496291428776815, 639204721160345509, 5728606469731066947, 51453397357702434497
Offset: 0

Views

Author

Paul D. Hanna, Nov 08 2014

Keywords

Comments

Compare this sequence to its dual, A248053.

Examples

			G.f.: A(x) = 1 + 3*x + 17*x^2 + 111*x^3 + 805*x^4 + 6147*x^5 + 48641*x^6 +...
where the g.f. is given by the binomial series identity:
A(x) = 1/(1-2*x) + x/(1-2*x)^3 * (1 + 2*x) * (1 + 4*x)
+ x^2/(1-2*x)^5 * (1 + 2^2*2*x + 4*x^2) * (1 + 2^2*4*x + 16*x^2)
+ x^3/(1-2*x)^7 * (1 + 3^2*2*x + 3^2*4*x^2 + 8*x^3) * (1 + 3^2*4*x + 3^2*16*x^2 + 64*x^3)
+ x^4/(1-2*x)^9 * (1 + 4^2*2*x + 6^2*4*x^2 + 4^2*8*x^3 + 16*x^4) * (1 + 4^2*4*x + 6^2*16*x^2 + 4^2*64*x^3 + 2561*x^4)
+ x^5/(1-2*x)^11 * (1 + 5^2*2*x + 10^2*4*x^2 + 10^2*8*x^3 + 5^2*16*x^4 + 32*x^5) * (1 + 5^2*4*x + 10^2*16*x^2 + 10^2*64*x^3 + 5^2*256*x^4 + 1024*x^5) +...
equals the series
A(x) = 1/(1-x) + x/(1-x)^3 * (1 + x) * (2 + 4*x)
+ x^2/(1-x)^5 * (1 + 2^2*x + x^2) * (4 + 2^2*2*4*x + 16*x^2)
+ x^3/(1-x)^7 * (1 + 3^2*x + 3^2*x^2 + x^3) * (8 + 3^2*4*4*x + 3^2*2*16*x^2 + 64*x^3)
+ x^4/(1-x)^9 * (1 + 4^2*x + 6^2*x^2 + 4^2*x^3 + x^4) * (16 + 4^2*8*4*x + 6^2*4*16*x^2 + 4^2*2*64*x^3 + 256*x^4)
+ x^5/(1-x)^11 * (1 + 5^2*x + 10^2*x^2 + 10^2*x^3 + 5^2*x^4 + x^5) * (32 + 5^2*16*4*x + 10^2*8*16*x^2 + 10^2*4*64*x^3 + 5^2*2*256*x^4 + 1024*x^5) +...
We can also express the g.f. by another binomial series identity:
A(x) = 1 + x*(2 + (1+4*x)) + x^2*(4 + 2^2*2*(1+4*x) + (1+2^2*4*x+16*x^2))
+ x^3*(8 + 3^2*4*(1+4*x) + 3^2*2*(1+2^2*4*x+16*x^2) + (1+3^2*4*x+3^2*16*x^2+64*x^3))
+ x^4*(16 + 4^2*8*(1+4*x) + 6^2*4*(1+2^2*4*x+16*x^2) + 4^2*2*(1+3^2*4*x+3^2*16*x^2+64*x^3) + (1+4^2*4*x+6^2*16*x^2+4^2*64*x^3+256*x^4))
+ x^5*(32 + 5^2*16*(1+4*x) + 10^2*8*(1+2^2*4*x+16*x^2) + 10^2*4*(1+3^2*4*x+3^2*16*x^2+64*x^3) + 5^2*2*(1+4^2*4*x+6^2*16*x^2+4^2*64*x^3+256*x^4) + (1+5^2*4*x+10^2*16*x^2+10^2*64*x^3+5^2*256*x^4+1024*x^5)) +...
equals the series
A(x) = 1 + x*(1 + (2+4*x)) + x^2*(1 + 2^2*(2+4*x) + (4+2^2*2*4*x+16*x^2))
+ x^3*(1 + 3^2*(2+4*x) + 3^2*(4+2^2*2*4*x+16*x^2) + (8+3^2*4*4*x+3^2*2*16*x^2+64*x^3))
+ x^4*(1 + 4^2*(2+4*x) + 6^2*(4+2^2*2*4*x+16*x^2) + 4^2*(8+3^2*4*4*x+3^2*2*16*x^2+64*x^3) + (16+4^2*8*4*x+6^2*4*16*x^2+4^2*2*64*x^3+256*x^4))
+ x^5*(1 + 5^2*(2+4*x) + 10^2*(4+2^2*2*4*x+16*x^2) + 10^2*(8+3^2*4*4*x+3^2*2*16*x^2+64*x^3) + 5^2*(16+4^2*8*4*x+6^2*4*16*x^2+4^2*2*64*x^3+256*x^4) + (32+5^2*16*4*x+10^2*8*26*x^2+10^2*4*64*x^3+5^2*2*256*x^4+1024*x^5)) +...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[4^k * Sum[Binomial[n-k, k+j]^2 * Binomial[k+j, j]^2 * 2^j,{j,0,n-2*k}],{k,0,Floor[n/2]}],{n,0,20}] (* Vaclav Kotesovec, Nov 09 2014 *)
  • PARI
    /* By definition: */
    {a(n,p,q)=local(A=1); A=sum(m=0, n, x^m/(1-p*x)^(2*m+1) * sum(k=0, m, binomial(m, k)^2 * p^k * x^k) * sum(k=0, m, binomial(m, k)^2 * q^k *x^k) +x*O(x^n)); polcoeff(A, n)}
    for(n=0, 25, print1(a(n,2,4), ", "))
    
  • PARI
    /* By a binomial identity: */
    {a(n,p,q)=local(A=1); A=sum(m=0, n, x^m/(1-x)^(2*m+1) * sum(k=0, m, binomial(m, k)^2*p^(m-k)*q^k*x^k) * sum(k=0, m, binomial(m, k)^2*x^k) +x*O(x^n)); polcoeff(A, n)}
    for(n=0, 25, print1(a(n,2,4), ", "))
    
  • PARI
    /* By a binomial identity: */
    {a(n,p,q)=polcoeff(sum(m=0, n, x^m*sum(k=0, m, binomial(m, k)^2 * p^(m-k)* sum(j=0, k, binomial(k, j)^2 * q^j * x^j)+x*O(x^n))), n)}
    for(n=0, 25, print1(a(n,2,4), ", "))
    
  • PARI
    /* By a binomial identity: */
    {a(n,p,q)=polcoeff(sum(m=0, n, x^m*sum(k=0, m, binomial(m, k)^2 * sum(j=0, k, binomial(k, j)^2 * p^(k-j) * q^j * x^j)+x*O(x^n))), n)}
    for(n=0, 25, print1(a(n,2,4), ", "))
    
  • PARI
    /* Formula for a(n): */
    {a(n,p,q)=sum(k=0, n\2, sum(j=0, n-2*k, q^k * binomial(n-k, k+j)^2 * binomial(k+j, j)^2 * p^j))}
    for(n=0, 25, print1(a(n,2,4), ", "))

Formula

G.f.: Sum_{n>=0} x^n / (1-x)^(2*n+1) * [Sum_{k=0..n} C(n,k)^2 * x^k] * [Sum_{k=0..n} C(n,k)^2 * 2^(n-k) * 4^k * x^k].
G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} C(n,k)^2 * Sum_{j=0..k} C(k,j)^2 * 2^(k-j) * 4^j * x^j.
G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} C(n,k)^2 * 2^(n-k) * Sum_{j=0..k} C(k,j)^2 * 4^j * x^j.
a(n) = Sum_{k=0..[n/2]} 4^k * Sum_{j=0..n-2*k} C(n-k, k+j)^2 * C(k+j, j)^2 * 2^j.
Recurrence: (n-5)*(n-4)*(n-2)*n^2*a(n) = 3*(n-5)*(n-4)*(4*n^3 - 12*n^2 + 10*n - 3)*a(n-1) - (n-5)*(n-4)*(n-1)*(22*n^2 - 66*n + 53)*a(n-2) - 12*(n-5)*(n-2)*(3*n^3 - 21*n^2 + 44*n - 29)*a(n-3) + (n-3)*(143*n^4 - 1716*n^3 + 7111*n^2 - 11778*n + 6336)*a(n-4) - 48*(n-4)*(n-1)*(3*n^3 - 33*n^2 + 116*n - 127)*a(n-5) - 16*(n-5)*(n-2)*(n-1)*(22*n^2 - 198*n + 449)*a(n-6) + 192*(n-2)*(n-1)*(4*n^3 - 60*n^2 + 298*n - 489)*a(n-7) - 256*(n-6)^2*(n-4)*(n-2)*(n-1)*a(n-8). - Vaclav Kotesovec, Nov 09 2014
a(n) ~ sqrt((56 + 49*sqrt(2) + sqrt(2*(3905+2744*sqrt(2))))/2) * ((7 + 2*sqrt(2) + sqrt(41 + 28*sqrt(2)))/2)^n / (8*Pi*n). - Vaclav Kotesovec, Nov 09 2014
Showing 1-10 of 10 results.