cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245931 G.f.: 1 / sqrt( AGM((1 - 3*x)^2, (1 + x)^2) ).

Original entry on oeis.org

1, 1, 1, 1, 3, 11, 31, 71, 157, 397, 1141, 3301, 9079, 24207, 65339, 182131, 517307, 1467067, 4128859, 11606683, 32835433, 93588097, 267745149, 766331573, 2193690811, 6289737611, 18081071971, 52099389811, 150344751721, 434277817873, 1255708046341, 3635404626381, 10538677900781, 30585912440557
Offset: 0

Views

Author

Paul D. Hanna, Aug 14 2014

Keywords

Comments

Here AGM(x,y) = AGM((x+y)/2, sqrt(x*y)) denotes the arithmetic-geometric mean.
Self-convolution yields A245930.
Limit a(n+1)/a(n) = 3.

Examples

			G.f.: A(x) = 1 + x + x^2 + x^3 + 3*x^4 + 11*x^5 + 31*x^6 + 71*x^7 + 157*x^8 +...
where
1/A(x) = 1 - x - 2*x^4 - 6*x^5 - 12*x^6 - 20*x^7 - 42*x^8 - 126*x^9 - 392*x^10 - 1080*x^11 - 2722*x^12 - 6886*x^13 - 18612*x^14 - 52780*x^15 - 149564*x^16 -...
equals sqrt( AGM((1 - 3*x)^2, (1 + x)^2) ).
The logarithmic derivative of the g.f. begins:
A'(x)/A(x) = 1 + x + x^2 + 9*x^3 + 41*x^4 + 121*x^5 + 281*x^6 + 673*x^7 + 2017*x^8 + 6721*x^9 + 21121*x^10 + 61065*x^11 + 171497*x^12 +...+ A245932(n)*x^n +...
		

Crossrefs

Cf. A245930, A245932 (log), A227846.

Programs

  • Mathematica
    Simplify[CoefficientList[Series[Sqrt[(2*EllipticK[1 - (1 - 3*x)^4/(1 + x)^4]) / Pi] / (1 + x), {x, 0, 30}], x]] (* Vaclav Kotesovec, Sep 27 2019 *)
  • PARI
    {a(n)=local(A=1); A = 1 / sqrt( agm((1-3*x)^2, (1+x)^2 +x*O(x^n)) ); polcoeff(A,n)}
    for(n=0,35,print1(a(n),", "))

Formula

G.f.: 1 / sqrt( AGM((1-x)^2 + 4*x^2, (1-x)^2 - 4*x^2) ).
G.f.: 1 / sqrt( AGM((1-x)^2, sqrt((1-x)^4 - 16*x^4)) ).
a(n) ~ 3^(n+1) / (4*n*sqrt(Pi*log(n))) * (1 + (log(3) - 3*log(2) - gamma) / (2*log(n)) + (3*gamma^2/8 + 9*gamma*log(2)/4 - 3*gamma*log(3)/4 + 27*log(2)^2/8 - 9*log(3)*log(2)/4 + 3*log(3)^2/8 - Pi^2/16) / log(n)^2), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Sep 29 2019