cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A245932 G.f.: G'(x) / G(x) where G(x) = 1 / sqrt( AGM((1 - 3*x)^2, (1 + x)^2) ) is the g.f. of A245931.

Original entry on oeis.org

1, 1, 1, 9, 41, 121, 281, 673, 2017, 6721, 21121, 61065, 171497, 495769, 1488761, 4509793, 13468897, 39688609, 116869153, 346788009, 1035199817, 3090560089, 9200749433, 27347417281, 81352371841, 242426988961, 723125351521, 2156829477609, 6430792717001, 19174372701241, 57194628447641
Offset: 0

Views

Author

Paul D. Hanna, Aug 14 2014

Keywords

Comments

Here AGM(x,y) = AGM((x+y)/2, sqrt(x*y)) denotes the arithmetic-geometric mean.
Limit a(n+1)/a(n) = 3.

Crossrefs

Cf. A245931.

Programs

  • Mathematica
    Simplify[CoefficientList[Series[D[Log[Sqrt[(2*EllipticK[1 - (1 - 3*x)^4/(1 + x)^4])/Pi] / (1 + x)], x], {x, 0, 30}], x]] (* Vaclav Kotesovec, Sep 27 2019 *)
  • PARI
    /* As the logarithmic derivative of A245931: */
    {a(n)=local(G=1); G = 1 / sqrt( agm((1-3*x)^2, (1+x)^2 +x^2*O(x^n)) ); polcoeff(G'/G,n)}
    for(n=0,35,print1(a(n),", "))
    
  • PARI
    /* As the logarithm of g.f. of A245931 (offset = 1): */
    {a(n)=local(A=1); A = -log( agm((1-3*x)^2, (1+x)^2 +x*O(x^n)) )/2; n*polcoeff(A,n)}
    for(n=1,35,print1(a(n),", "))

Formula

G.f.: A(x) = 1 + x + x^2 + 9*x^3 + 41*x^4 + 121*x^5 + 281*x^6 + 673*x^7 +...
As a logarithmic expansion,
L(x) = x + x^2/2 + x^3/3 + 9*x^4/4 + 41*x^5/5 + 121*x^6/6 + 281*x^7/7 + 673*x^8/8 + 2017*x^9/9 + 6721*x^10/10 +...
where
exp(L(x)) = 1 + x + x^2 + x^3 + 3*x^4 + 11*x^5 + 31*x^6 + 71*x^7 + 157*x^8 +...
equals 1 / sqrt( AGM((1 - 3*x)^2, (1 + x)^2) ).
a(n) ~ 3^(n+1) / (2*log(n)) * (1 + (log(3) - 3*log(2) - gamma) / log(n)), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Sep 30 2019

A245930 G.f.: 1 / AGM((1 - 3*x)^2, (1 + x)^2).

Original entry on oeis.org

1, 2, 3, 4, 9, 30, 91, 232, 549, 1378, 3839, 11100, 31301, 85694, 234207, 653328, 1856829, 5300010, 15062839, 42702596, 121448901, 347414166, 997886671, 2870139480, 8257776521, 23782773242, 68627659563, 198437633884, 574654851209, 1665825647430, 4833258038251, 14037680955552, 40816416373293
Offset: 0

Views

Author

Paul D. Hanna, Aug 14 2014

Keywords

Comments

Here AGM(x,y) = AGM((x+y)/2, sqrt(x*y)) denotes the arithmetic-geometric mean.
Self-convolution of A245931.
Limit a(n+1)/a(n) = 3.

Examples

			G.f.: A(x) = 1 + 2*x + 3*x^2 + 4*x^3 + 9*x^4 + 30*x^5 + 91*x^6 + 232*x^7 +...
where
1/A(x) = 1 - 2*x + x^2 - 4*x^4 - 8*x^5 - 12*x^6 - 16*x^7 - 40*x^8 - 144*x^9 - 448*x^10 - 1152*x^11 - 2732*x^12 - 6840*x^13 - 18964*x^14 +...
equals AGM((1 - 3*x)^2, (1 + x)^2).
SPECIFIC VALUES:
A(x) = 2 at x = 0.2650276124990406644...
A(x) = 3 at x = 0.31872724866867463...
A(x) = 4 at x = 0.32990867978741...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1); A = 1 / agm((1-3*x)^2, (1+x)^2 +x*O(x^n)); polcoeff(A,n)}
    for(n=0,35,print1(a(n),", "))

Formula

G.f.: 1 / AGM((1-x)^2 + 4*x^2, (1-x)^2 - 4*x^2).
G.f.: 1 / AGM((1-x)^2, sqrt((1-x)^4 - 16*x^4)).
Recurrence: n^2*a(n) = (5*n^2 - 5*n + 2)*a(n-1) - 2*(5*n^2 - 10*n + 6)*a(n-2) + 2*(5*n^2 - 15*n + 12)*a(n-3) + 11*(n-2)^2*a(n-4) - 15*(n-3)*(n-2)*a(n-5). - Vaclav Kotesovec, Aug 16 2014
a(n) ~ 3^(n+2) / (4*Pi*n). - Vaclav Kotesovec, Aug 16 2014
Showing 1-2 of 2 results.