A245932 G.f.: G'(x) / G(x) where G(x) = 1 / sqrt( AGM((1 - 3*x)^2, (1 + x)^2) ) is the g.f. of A245931.
1, 1, 1, 9, 41, 121, 281, 673, 2017, 6721, 21121, 61065, 171497, 495769, 1488761, 4509793, 13468897, 39688609, 116869153, 346788009, 1035199817, 3090560089, 9200749433, 27347417281, 81352371841, 242426988961, 723125351521, 2156829477609, 6430792717001, 19174372701241, 57194628447641
Offset: 0
Keywords
Links
- Paul D. Hanna, Table of n, a(n) for n = 0..1000
Crossrefs
Cf. A245931.
Programs
-
Mathematica
Simplify[CoefficientList[Series[D[Log[Sqrt[(2*EllipticK[1 - (1 - 3*x)^4/(1 + x)^4])/Pi] / (1 + x)], x], {x, 0, 30}], x]] (* Vaclav Kotesovec, Sep 27 2019 *)
-
PARI
/* As the logarithmic derivative of A245931: */ {a(n)=local(G=1); G = 1 / sqrt( agm((1-3*x)^2, (1+x)^2 +x^2*O(x^n)) ); polcoeff(G'/G,n)} for(n=0,35,print1(a(n),", "))
-
PARI
/* As the logarithm of g.f. of A245931 (offset = 1): */ {a(n)=local(A=1); A = -log( agm((1-3*x)^2, (1+x)^2 +x*O(x^n)) )/2; n*polcoeff(A,n)} for(n=1,35,print1(a(n),", "))
Formula
G.f.: A(x) = 1 + x + x^2 + 9*x^3 + 41*x^4 + 121*x^5 + 281*x^6 + 673*x^7 +...
As a logarithmic expansion,
L(x) = x + x^2/2 + x^3/3 + 9*x^4/4 + 41*x^5/5 + 121*x^6/6 + 281*x^7/7 + 673*x^8/8 + 2017*x^9/9 + 6721*x^10/10 +...
where
exp(L(x)) = 1 + x + x^2 + x^3 + 3*x^4 + 11*x^5 + 31*x^6 + 71*x^7 + 157*x^8 +...
equals 1 / sqrt( AGM((1 - 3*x)^2, (1 + x)^2) ).
a(n) ~ 3^(n+1) / (2*log(n)) * (1 + (log(3) - 3*log(2) - gamma) / log(n)), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Sep 30 2019
Comments