cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245958 Number T(n,k) of endofunctions f on [n] satisfying f^3(i) = i for all i in [k]; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 1, 1, 4, 2, 1, 27, 11, 5, 3, 256, 88, 36, 18, 9, 3125, 925, 335, 141, 57, 21, 46656, 12096, 3912, 1440, 516, 186, 81, 823543, 189679, 55377, 18279, 6003, 2079, 837, 351, 16777216, 3473408, 924160, 277824, 84624, 27672, 10116, 3690, 1233
Offset: 0

Views

Author

Alois P. Heinz, Aug 08 2014

Keywords

Examples

			Triangle T(n,k) begins:
0 :       1;
1 :       1,      1;
2 :       4,      2,     1;
3 :      27,     11,     5,     3;
4 :     256,     88,    36,    18,    9;
5 :    3125,    925,   335,   141,   57,   21;
6 :   46656,  12096,  3912,  1440,  516,  186,  81;
7 :  823543, 189679, 55377, 18279, 6003, 2079, 837, 351;
     ...
		

Crossrefs

Column k=0 gives A000312.
T(2n,n) gives A245959.
Main diagonal gives A001470.
Cf. A241015.

Programs

  • Maple
    with(combinat): M:=multinomial:
    T:= proc(n, k) local l, g; l, g:= [1, 3],
          proc(k, m, i, t) option remember; local d, j; d:= l[i];
            `if`(i=1, n^m, add(M(k, k-(d-t)*j, (d-t)$j)/j!*
             (d-1)!^j *M(m, m-t*j, t$j) *g(k-(d-t)*j, m-t*j,
            `if`(d-t=1, [i-1, 0], [i, t+1])[]), j=0..min(k/(d-t),
            `if`(t=0, [][], m/t))))
          end; g(k, n-k, nops(l), 0)
        end:
    seq(seq(T(n, k), k=0..n), n=0..12);
  • Mathematica
    M[n_, m_, k_List] := n!/Times @@ (Join[{m}, k]!);
    T[0, 0] = 1; T[n_, k_] := T[n, k] = Module[{l = {1, 3}, g}, g[k0_, m_, {i_, t_}] := g[k0, m, i, t]; g[k0_, m_, i_, t_] := g[k0, m, i, t] = Module[ {d}, d = l[[i]]; If[i == 1, n^m, Sum[M[k0, k0 - (d-t)*j, Table[(d-t), {j}]]/j!*(d-1)!^j*M[m, m - t*j, Table[t, {j}]]*g[k0 - (d-t)*j, m - t*j, If[d-t == 1, {i-1, 0}, {i, t+1}]], {j, 0, Min[k0/(d-t), If[t == 0, Infinity, m/t]]}]]]; g[k, n-k, Length[l], 0]];
    Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Oct 03 2019, after Alois P. Heinz *)