A245958 Number T(n,k) of endofunctions f on [n] satisfying f^3(i) = i for all i in [k]; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
1, 1, 1, 4, 2, 1, 27, 11, 5, 3, 256, 88, 36, 18, 9, 3125, 925, 335, 141, 57, 21, 46656, 12096, 3912, 1440, 516, 186, 81, 823543, 189679, 55377, 18279, 6003, 2079, 837, 351, 16777216, 3473408, 924160, 277824, 84624, 27672, 10116, 3690, 1233
Offset: 0
Examples
Triangle T(n,k) begins: 0 : 1; 1 : 1, 1; 2 : 4, 2, 1; 3 : 27, 11, 5, 3; 4 : 256, 88, 36, 18, 9; 5 : 3125, 925, 335, 141, 57, 21; 6 : 46656, 12096, 3912, 1440, 516, 186, 81; 7 : 823543, 189679, 55377, 18279, 6003, 2079, 837, 351; ...
Links
- Alois P. Heinz, Rows n = 0..140, flattened
Crossrefs
Programs
-
Maple
with(combinat): M:=multinomial: T:= proc(n, k) local l, g; l, g:= [1, 3], proc(k, m, i, t) option remember; local d, j; d:= l[i]; `if`(i=1, n^m, add(M(k, k-(d-t)*j, (d-t)$j)/j!* (d-1)!^j *M(m, m-t*j, t$j) *g(k-(d-t)*j, m-t*j, `if`(d-t=1, [i-1, 0], [i, t+1])[]), j=0..min(k/(d-t), `if`(t=0, [][], m/t)))) end; g(k, n-k, nops(l), 0) end: seq(seq(T(n, k), k=0..n), n=0..12);
-
Mathematica
M[n_, m_, k_List] := n!/Times @@ (Join[{m}, k]!); T[0, 0] = 1; T[n_, k_] := T[n, k] = Module[{l = {1, 3}, g}, g[k0_, m_, {i_, t_}] := g[k0, m, i, t]; g[k0_, m_, i_, t_] := g[k0, m, i, t] = Module[ {d}, d = l[[i]]; If[i == 1, n^m, Sum[M[k0, k0 - (d-t)*j, Table[(d-t), {j}]]/j!*(d-1)!^j*M[m, m - t*j, Table[t, {j}]]*g[k0 - (d-t)*j, m - t*j, If[d-t == 1, {i-1, 0}, {i, t+1}]], {j, 0, Min[k0/(d-t), If[t == 0, Infinity, m/t]]}]]]; g[k, n-k, Length[l], 0]]; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Oct 03 2019, after Alois P. Heinz *)