cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245961 Number of 4-cycles in the Lucas cube Lambda(n).

Original entry on oeis.org

0, 0, 0, 0, 2, 5, 15, 35, 80, 171, 355, 715, 1410, 2730, 5208, 9810, 18280, 33745, 61785, 112309, 202840, 364245, 650705, 1157015, 2048532, 3612900, 6349200, 11121300, 19421150, 33820061, 58740915, 101777495, 175945280, 303516015, 522541903, 897942115
Offset: 0

Views

Author

Emeric Deutsch, Aug 10 2014

Keywords

Comments

The vertex set of the Lucas cube Lambda(n) is the set of all binary strings of length n without consecutive 1's and without a 1 in the first and the last bit. Two vertices of the Lucas cube are adjacent if their strings differ in exactly one bit.

Examples

			a(3)=0 because the Lucas cube Lambda(3) is the star-tree on 4 vertices.
		

Crossrefs

Cf. A364605 (number of 6-cycles).

Programs

  • Magma
    [((n-n^2)*Fibonacci(n) + (3*n^2 - 5*n)*Fibonacci(n-1))/10: n in [0..50]]; // Vincenzo Librandi, Aug 11 2014
    
  • Maple
    with(combinat): a := proc (n) options operator, arrow: (1/10)*n*(1-n)*fibonacci(n)+(1/10)*n*(3*n-5)*fibonacci(n-1) end proc: seq(a(n), n = 0 .. 35);
  • Mathematica
    Table[((n - n^2) Fibonacci[n] + (3 n^2 - 5 n) Fibonacci[n - 1])/10, {n, 0, 50}] (* Vincenzo Librandi, Aug 11 2014 *)
    LinearRecurrence[{3, 0, -5, 0, 3, 1}, {0, 0, 0, 2, 5, 15}, 20] (* Eric W. Weisstein, Jul 29 2023 *)
    CoefficientList[Series[(-2 + x) x^3/(-1 + x + x^2)^3, {x, 0, 20}], x] (* Eric W. Weisstein, Jul 29 2023 *)
  • PARI
    concat([0,0,0,0], Vec(x^4*(x-2)/(x^2+x-1)^3 + O(x^100))) \\ Colin Barker, Aug 13 2014

Formula

a(n) = ((n-n^2)*F(n) + (3n^2 - 5n)*F(n-1))/10, where F(n) = A000045(n), the Fibonacci numbers. Formula follows from Eq. (4) of the Klavzar 2005 reference and from the first formula on p. 511 of the Klavzar 2013 reference.
a(n) = Sum(L(i)*b(n-3-i), i=0..n-4), where L(i) = A000032(i) are the Lucas numbers and b(j) = A001629(j+1) is the number of edges in the Fibonacci cube Gamma(j) (see Prop. 9 of the Klavzar 2005 reference).
a(n) = 3*a(n-1)-5*a(n-3)+3*a(n-5)+a(n-6). G.f.: x^4*(x-2) / (x^2+x-1)^3. - Colin Barker, Aug 11 2014
a(n) = 2*A001628(n-4)-A001628(n-5). - R. J. Mathar, Jul 24 2022
G.f.: (-2+x)*x^4/(-1+x+x^2)^3. - Eric W. Weisstein, Jul 29 2023