A245961 Number of 4-cycles in the Lucas cube Lambda(n).
0, 0, 0, 0, 2, 5, 15, 35, 80, 171, 355, 715, 1410, 2730, 5208, 9810, 18280, 33745, 61785, 112309, 202840, 364245, 650705, 1157015, 2048532, 3612900, 6349200, 11121300, 19421150, 33820061, 58740915, 101777495, 175945280, 303516015, 522541903, 897942115
Offset: 0
Examples
a(3)=0 because the Lucas cube Lambda(3) is the star-tree on 4 vertices.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- S. Klavzar, On median nature and enumerative properties of Fibonacci-like cubes, Discr. Math. 299 (2005), 145-153.
- S. Klavzar, Structure of Fibonacci cubes: a survey, J. Comb. Optim., 25, 2013, 505-522.
- Eric Weisstein's World of Mathematics, Lucas Cube Graph
- Index entries for linear recurrences with constant coefficients, signature (3,0,-5,0,3,1).
Programs
-
Magma
[((n-n^2)*Fibonacci(n) + (3*n^2 - 5*n)*Fibonacci(n-1))/10: n in [0..50]]; // Vincenzo Librandi, Aug 11 2014
-
Maple
with(combinat): a := proc (n) options operator, arrow: (1/10)*n*(1-n)*fibonacci(n)+(1/10)*n*(3*n-5)*fibonacci(n-1) end proc: seq(a(n), n = 0 .. 35);
-
Mathematica
Table[((n - n^2) Fibonacci[n] + (3 n^2 - 5 n) Fibonacci[n - 1])/10, {n, 0, 50}] (* Vincenzo Librandi, Aug 11 2014 *) LinearRecurrence[{3, 0, -5, 0, 3, 1}, {0, 0, 0, 2, 5, 15}, 20] (* Eric W. Weisstein, Jul 29 2023 *) CoefficientList[Series[(-2 + x) x^3/(-1 + x + x^2)^3, {x, 0, 20}], x] (* Eric W. Weisstein, Jul 29 2023 *)
-
PARI
concat([0,0,0,0], Vec(x^4*(x-2)/(x^2+x-1)^3 + O(x^100))) \\ Colin Barker, Aug 13 2014
Formula
a(n) = ((n-n^2)*F(n) + (3n^2 - 5n)*F(n-1))/10, where F(n) = A000045(n), the Fibonacci numbers. Formula follows from Eq. (4) of the Klavzar 2005 reference and from the first formula on p. 511 of the Klavzar 2013 reference.
a(n) = Sum(L(i)*b(n-3-i), i=0..n-4), where L(i) = A000032(i) are the Lucas numbers and b(j) = A001629(j+1) is the number of edges in the Fibonacci cube Gamma(j) (see Prop. 9 of the Klavzar 2005 reference).
a(n) = 3*a(n-1)-5*a(n-3)+3*a(n-5)+a(n-6). G.f.: x^4*(x-2) / (x^2+x-1)^3. - Colin Barker, Aug 11 2014
G.f.: (-2+x)*x^4/(-1+x+x^2)^3. - Eric W. Weisstein, Jul 29 2023
Comments