cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245968 The edge independence number of the Lucas cube Lambda(n).

Original entry on oeis.org

0, 0, 1, 1, 3, 5, 8, 14, 23, 37, 61, 99, 160, 260, 421, 681, 1103, 1785, 2888, 4674, 7563, 12237, 19801, 32039, 51840, 83880, 135721, 219601, 355323, 574925, 930248, 1505174, 2435423, 3940597, 6376021, 10316619, 16692640, 27009260, 43701901, 70711161, 114413063
Offset: 0

Views

Author

Emeric Deutsch, Aug 16 2014

Keywords

Comments

The Lucas cube Lambda(n) can be defined as the graph whose vertices are the binary strings of length n without either two consecutive 1's or a 1 in the first and in the last position, and in which two vertices are adjacent when their Hamming distance is exactly 1.

Examples

			a(3)=1 because Lambda(3) is the star tree on four vertices, having, obviously, vertex independence number equal to 1.
		

Crossrefs

Cf. A000032.

Programs

  • Magma
    [Floor((Lucas(n)-1)/2):n in [0..50]]; // Vincenzo Librandi, Aug 31 2014
  • Maple
    with(combinat): a := proc (n) options operator, arrow: floor((1/2)*fibonacci(n+1)+(1/2)*fibonacci(n-1)-1/2) end proc: seq(a(n), n = 0 .. 40);
  • Mathematica
    CoefficientList[Series[x^2 (x^2 + 1)/((x - 1) (x^2 + x - 1) (x^2 + x + 1)), {x, 0, 50}], x] (* Vincenzo Librandi, Aug 31 2014 *)
    Floor[(LucasL[Range[20]] - 1)/2] (* Eric W. Weisstein, Aug 01 2023 *)
    LinearRecurrence[{1, 1, 1, -1, -1}, {0, 1, 1, 3, 5, 8}, 20] (* Eric W. Weisstein, Aug 01 2023 *)
    Table[LucasL[n]/2 - (Cos[2 n Pi/3] + 2)/3, {n, 20}] (* Eric W. Weisstein, Aug 01 2023 *)
  • PARI
    concat([0,0], Vec(x^2*(x^2+1)/((x-1)*(x^2+x-1)*(x^2+x+1)) + O(x^100))) \\ Colin Barker, Aug 31 2014
    

Formula

a(n) = floor((L(n)-1)/2), where L(n) = A000032(n) are the Lucas numbers (L(0)=2, L(1)=1, L(n)=L(n-1)+L(n-2) for n>=2).
G.f.: x^2*(x^2+1) / ((x-1)*(x^2+x-1)*(x^2+x+1)). - Colin Barker, Aug 31 2014
a(n) = a(n-1)+a(n-2)+a(n-3)-a(n-4)-a(n-5). - Colin Barker, Aug 31 2014