A245968 The edge independence number of the Lucas cube Lambda(n).
0, 0, 1, 1, 3, 5, 8, 14, 23, 37, 61, 99, 160, 260, 421, 681, 1103, 1785, 2888, 4674, 7563, 12237, 19801, 32039, 51840, 83880, 135721, 219601, 355323, 574925, 930248, 1505174, 2435423, 3940597, 6376021, 10316619, 16692640, 27009260, 43701901, 70711161, 114413063
Offset: 0
Examples
a(3)=1 because Lambda(3) is the star tree on four vertices, having, obviously, vertex independence number equal to 1.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- E. Munarini, C. P. Cippo, and N. Z. Salvi, On the Lucas cubes, The Fibonacci Quarterly, 39, No. 1, 2001, 12-21.
- Eric Weisstein's World of Mathematics, Lucas Cube Graph
- Eric Weisstein's World of Mathematics, Matching Number
- Index entries for linear recurrences with constant coefficients, signature (1,1,1,-1,-1).
Crossrefs
Cf. A000032.
Programs
-
Magma
[Floor((Lucas(n)-1)/2):n in [0..50]]; // Vincenzo Librandi, Aug 31 2014
-
Maple
with(combinat): a := proc (n) options operator, arrow: floor((1/2)*fibonacci(n+1)+(1/2)*fibonacci(n-1)-1/2) end proc: seq(a(n), n = 0 .. 40);
-
Mathematica
CoefficientList[Series[x^2 (x^2 + 1)/((x - 1) (x^2 + x - 1) (x^2 + x + 1)), {x, 0, 50}], x] (* Vincenzo Librandi, Aug 31 2014 *) Floor[(LucasL[Range[20]] - 1)/2] (* Eric W. Weisstein, Aug 01 2023 *) LinearRecurrence[{1, 1, 1, -1, -1}, {0, 1, 1, 3, 5, 8}, 20] (* Eric W. Weisstein, Aug 01 2023 *) Table[LucasL[n]/2 - (Cos[2 n Pi/3] + 2)/3, {n, 20}] (* Eric W. Weisstein, Aug 01 2023 *)
-
PARI
concat([0,0], Vec(x^2*(x^2+1)/((x-1)*(x^2+x-1)*(x^2+x+1)) + O(x^100))) \\ Colin Barker, Aug 31 2014
Formula
a(n) = floor((L(n)-1)/2), where L(n) = A000032(n) are the Lucas numbers (L(0)=2, L(1)=1, L(n)=L(n-1)+L(n-2) for n>=2).
G.f.: x^2*(x^2+1) / ((x-1)*(x^2+x-1)*(x^2+x+1)). - Colin Barker, Aug 31 2014
a(n) = a(n-1)+a(n-2)+a(n-3)-a(n-4)-a(n-5). - Colin Barker, Aug 31 2014
Comments