cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A062389 a(n) = floor( (2n-1)*Pi/2 ).

Original entry on oeis.org

1, 4, 7, 10, 14, 17, 20, 23, 26, 29, 32, 36, 39, 42, 45, 48, 51, 54, 58, 61, 64, 67, 70, 73, 76, 80, 83, 86, 89, 92, 95, 98, 102, 105, 108, 111, 114, 117, 120, 124, 127, 130, 133, 136, 139, 142, 146, 149, 152, 155, 158, 161, 164, 168, 171, 174, 177, 180, 183, 186
Offset: 1

Views

Author

Jason Earls, Jul 08 2001

Keywords

Comments

In general, the complement of a nonhomogenous Beatty sequence [n*r + h] is given by [n*s + h - h*s], where s = r/(r - 1). As an example, the complement of this sequence is A246046. This sequence gives the positive integers k satisfying tan(k) > tan(k + 1), and A246046 gives those satisfying tan(k) < tan(k + 1). - Clark Kimberling, Aug 24 2014
Excluding a(1), a(n) = positive floored solutions to tan(x) = x. - Derek Orr, May 30 2015

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 223.

Crossrefs

Cf. A246046.

Programs

  • Maple
    seq(floor((2*n-1)*Pi/2), n=1..1000); # Robert Israel, Jun 01 2015
  • Mathematica
    r = Pi; s = Pi/(Pi - 1); h = -Pi/2; z = 120;
    u = Table[Floor[n*r + h], {n, 1, z}] (* A062389 *)
    v = Table[Floor[n*s + h - h*s], {n, 1, z}]  (* A246046 *)
    (* Clark Kimberling, Aug 24 2014 *)
  • PARI
    j=[]; for(n=1,150,j=concat(j,floor(1/2*(2*n-1)*Pi))); j
    
  • PARI
    { default(realprecision, 50); for (n=1, 1000, write("b062389.txt", n, " ", (2*n - 1)*Pi\2); ) } \\ Harry J. Smith, Aug 06 2009

A246393 Nonnegative integers k satisfying cos(k) >= 0 and cos(k+1) <= 0.

Original entry on oeis.org

1, 7, 14, 20, 26, 32, 39, 45, 51, 58, 64, 70, 76, 83, 89, 95, 102, 108, 114, 120, 127, 133, 139, 146, 152, 158, 164, 171, 177, 183, 190, 196, 202, 208, 215, 221, 227, 234, 240, 246, 252, 259, 265, 271, 278, 284, 290, 296, 303, 309, 315, 322, 328, 334, 340
Offset: 0

Views

Author

Clark Kimberling, Aug 24 2014

Keywords

Comments

A246393 and A246394 partition A062389 (the nonhomogeneous Beatty sequence {floor((n-1/2)*Pi)}). Likewise, A246046, the complement of A062389, is partitioned by A246395 and A246396. (See the Mathematica program.)

Crossrefs

Programs

  • Mathematica
    z = 400; f[x_] := Cos[x]
    Select[Range[0, z], f[#]*f[# + 1] <= 0 &]  (* A062389 *)
    Select[Range[0, z], f[#] >= 0 && f[# + 1] <= 0 &]  (* A246393 *)
    Select[Range[0, z], f[#] <= 0 && f[# + 1] >= 0 &]  (* A246394 *)
    Select[Range[0, z], f[#]*f[# + 1] > 0 &]  (* A246046 *)
    Select[Range[0, z], f[#] >= 0 && f[# + 1] >= 0 &]  (* A246395 *)
    Select[Range[0, z], f[#] <= 0 && f[# + 1] <= 0 &]  (* A246396 *)

A246394 Nonnegative integers k satisfying cos(k) <= 0 and cos(k+1) >= 0.

Original entry on oeis.org

4, 10, 17, 23, 29, 36, 42, 48, 54, 61, 67, 73, 80, 86, 92, 98, 105, 111, 117, 124, 130, 136, 142, 149, 155, 161, 168, 174, 180, 186, 193, 199, 205, 212, 218, 224, 230, 237, 243, 249, 256, 262, 268, 274, 281, 287, 293, 300, 306, 312, 318, 325, 331, 337, 344
Offset: 0

Views

Author

Clark Kimberling, Aug 24 2014

Keywords

Comments

A246393 and A246394 partition A062389 (the nonhomogeneous Beatty sequence {floor((n-1/2)*Pi)}). Likewise, A246046, the complement of A062389, is partitioned by A246395 and A246396. (See the Mathematica program.)

Crossrefs

Programs

  • Mathematica
    z = 400; f[x_] := Cos[x]
    Select[Range[0, z], f[#]*f[# + 1] <= 0 &]  (* A062389 *)
    Select[Range[0, z], f[#] >= 0 && f[# + 1] <= 0 &]  (* A246393 *)
    Select[Range[0, z], f[#] <= 0 && f[# + 1] >= 0 &]  (* A246394 *)
    Select[Range[0, z], f[#]*f[# + 1] > 0 &]  (* A246046 *)
    Select[Range[0, z], f[#] >= 0 && f[# + 1] >= 0 &]  (* A246395 *)
    Select[Range[0, z], f[#] <= 0 && f[# + 1] <= 0 &]  (* A246396 *)

A246395 Nonnegative integers k satisfying cos(k) >= 0 and cos(k+1) >= 0.

Original entry on oeis.org

0, 5, 6, 11, 12, 13, 18, 19, 24, 25, 30, 31, 37, 38, 43, 44, 49, 50, 55, 56, 57, 62, 63, 68, 69, 74, 75, 81, 82, 87, 88, 93, 94, 99, 100, 101, 106, 107, 112, 113, 118, 119, 125, 126, 131, 132, 137, 138, 143, 144, 145, 150, 151, 156, 157, 162, 163, 169, 170
Offset: 0

Views

Author

Clark Kimberling, Aug 24 2014

Keywords

Comments

A246393 and A246394 partition A062389 (the nonhomogeneous Beatty sequence {floor((n-1/2)*Pi)}). Likewise, A246046, the complement of A062389, is partitioned by A246395 and A246396. (See the Mathematica program.)

Crossrefs

Programs

  • Mathematica
    z = 400; f[x_] := Cos[x]
    Select[Range[0, z], f[#]*f[# + 1] <= 0 &]  (* A062389 *)
    Select[Range[0, z], f[#] >= 0 && f[# + 1] <= 0 &]  (* A246393 *)
    Select[Range[0, z], f[#] <= 0 && f[# + 1] >= 0 &]  (* A246394 *)
    Select[Range[0, z], f[#]*f[# + 1] > 0 &]  (* A246046 *)
    Select[Range[0, z], f[#] >= 0 && f[# + 1] >= 0 &]  (* A246395 *)
    Select[Range[0, z], f[#] <= 0 && f[# + 1] <= 0 &]  (* A246396 *)

A246396 Nonnegative integers k satisfying cos(k) <= 0 and cos(k+1) <= 0.

Original entry on oeis.org

2, 3, 8, 9, 15, 16, 21, 22, 27, 28, 33, 34, 35, 40, 41, 46, 47, 52, 53, 59, 60, 65, 66, 71, 72, 77, 78, 79, 84, 85, 90, 91, 96, 97, 103, 104, 109, 110, 115, 116, 121, 122, 123, 128, 129, 134, 135, 140, 141, 147, 148, 153, 154, 159, 160, 165, 166, 167, 172
Offset: 0

Views

Author

Clark Kimberling, Aug 24 2014

Keywords

Comments

A246393 and A246394 partition A062389 (the nonhomogeneous Beatty sequence {floor((n-1/2)*Pi)}). Likewise, A246046, the complement of A062389, is partitioned by A246395 and A246396. (See the Mathematica program.)
Conjecture: every term t has at least one neighbor which is equal to t plus or minus one. - Harvey P. Dale, Jul 11 2023

Crossrefs

Programs

  • Mathematica
    z = 400; f[x_] := Cos[x]
    Select[Range[0, z], f[#]*f[# + 1] <= 0 &]  (* A062389 *)
    Select[Range[0, z], f[#] >= 0 && f[# + 1] <= 0 &]  (* A246393 *)
    Select[Range[0, z], f[#] <= 0 && f[# + 1] >= 0 &]  (* A246394 *)
    Select[Range[0, z], f[#]*f[# + 1] > 0 &]  (* A246046 *)
    Select[Range[0, z], f[#] >= 0 && f[# + 1] >= 0 &]  (* A246395 *)
    Select[Range[0, z], f[#] <= 0 && f[# + 1] <= 0 &]  (* A246396 *)
    SequencePosition[Table[If[Cos[k]<=0,1,0],{k,200}],{1,1}][[;;,1]] (* Harvey P. Dale, Jul 11 2023 *)

A257984 Nonhomogeneous Beatty sequence: ceiling((n - 1/2)*Pi).

Original entry on oeis.org

2, 5, 8, 11, 15, 18, 21, 24, 27, 30, 33, 37, 40, 43, 46, 49, 52, 55, 59, 62, 65, 68, 71, 74, 77, 81, 84, 87, 90, 93, 96, 99, 103, 106, 109, 112, 115, 118, 121, 125, 128, 131, 134, 137, 140, 143, 147, 150, 153, 156, 159, 162, 165, 169, 172, 175, 178, 181, 184
Offset: 1

Views

Author

Clark Kimberling, Jun 15 2015

Keywords

Comments

Let r = Pi, s = r/(r-1), and t = 1/2. Let R be the ordered set {floor[(n + t)*r] : n is an integer} and let S be the ordered set {floor[(n - t)*s : n is an integer}; thus,
R = (..., -10, -9, -7, -6, -4, -3, -1, 0, 2, 3, 5, 6, 8, ...);
S = (..., -15, -11, -8, -5, -2, 1, 4, 7, 10, 14, 17, 20, ...).
By Fraenkel's theorem (Theorem XI in the cited paper); R and S partition the integers.
R is the set of integers n such that (cos n)*(cos(n + 1)) < 0;
S is the set of integers n such that (cos n)*(cos(n + 1)) > 0.
A246046 = (2,3,5,6,8,...), positive terms of R;
A062389 = (1,4,7,10,14,17,...), positive terms of S;
A258048 = (1,3,4,6,7,9,10,...), - (negative terms of R);
A257984 = (2,5,8,11,15,...), - (negative terms of S).
A062389 and A246046 partition the positive integers, and A258048 and A257984 partition the positive integers.

Crossrefs

Cf. A258048 (complement), A246046, A062380, A258833.

Programs

  • Mathematica
    Table[Ceiling[(n - 1/2) Pi], {n, 1, 120}] (* A257984 *)
    Table[Ceiling[(n + 1/2) Pi/(Pi - 1)], {n, 0, 120}]  (* A258048 *)

Formula

a(n) = ceiling((n - 1/2)*Pi).

A258048 Nonhomogeneous Beatty sequence: a(n) = ceiling((n + 1/2)*Pi/(Pi - 1)).

Original entry on oeis.org

1, 3, 4, 6, 7, 9, 10, 12, 13, 14, 16, 17, 19, 20, 22, 23, 25, 26, 28, 29, 31, 32, 34, 35, 36, 38, 39, 41, 42, 44, 45, 47, 48, 50, 51, 53, 54, 56, 57, 58, 60, 61, 63, 64, 66, 67, 69, 70, 72, 73, 75, 76, 78, 79, 80, 82, 83, 85, 86, 88, 89, 91, 92, 94, 95, 97
Offset: 0

Views

Author

Clark Kimberling, Jun 15 2015

Keywords

Comments

See A257984.

Crossrefs

Cf. A257984 (complement), A246046, A062380, A258833.

Programs

  • Mathematica
    Table[Ceiling[(n - 1/2) Pi], {n, 1, 120}] (* A257984 *)
    Table[Ceiling[(n + 1/2) Pi/(Pi - 1)], {n, 0, 120}]  (* A258048 *)

Formula

a(n) = ceiling((n + 1/2)*Pi/(Pi - 1)).
Showing 1-7 of 7 results.