A246047 Irregular triangle read by rows, of partial serial probabilities T(n,k)_{2,3} (see "comments" for definitions and explanation).
1, 0, 2, 4, 4, 16, 8, 16, 48, 16, 96, 128, 64, 32, 384, 320, 512, 64, 1280, 256, 768, 2560, 128, 3840, 2560, 1792, 10240, 1024, 256, 10752, 15360, 4096, 35840, 12288, 512, 28672, 71680, 4096, 9216, 114688, 86016, 1024, 73728, 286720, 57344
Offset: 0
Examples
Triangle starts: 1; 0; 2; 4; 4; 16; 8, 16; 48; 16, 96; 128, 64; 32, 384; 320, 512; 64, 1280, 256; 768, 2560; 128, 3840, 2560; 1792, 10240, 1024; E.g., T(13,0) = 768 because 768/2^13 (3/32) is the probability that 13 will occur as a partial sum in a randomly-generated infinite sequence of 2s and 3s, where the compositions of 13 are into five sorts of 2s and one sort of 3s. In other words, P''(13,0)_{2,3} = 3/32. The sorts are 5 and 1, respectively, because (13 - 3*(13 mod 2) - 6*0)/2 = 5 and 2*0 + (13 mod 2) = 1.
Programs
-
PARI
tabf(nn) = {for (n=0, nn, for (k=0, max(0, (n+2)\2 - (n+2)\3 - 1), tnk = binomial((n - (n % 2) -2*k)/2, 2*k + (n % 2)) * 2^((n + (n % 2) + 2*k)/2); print1(tnk, ", ");); print(););} \\ Michel Marcus, Sep 26 2014
Formula
T(n,k) = binomial((n - (n mod 2) - 2*k)/2, 2*k + (n mod 2)) * 2^((n + (n mod 2) + 2*k)/2).
Extensions
More terms from Michel Marcus, Sep 26 2014
Comments