A246049 Number T(n,k) of endofunctions on [n] where the smallest cycle length equals k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
1, 0, 1, 0, 3, 1, 0, 19, 6, 2, 0, 175, 51, 24, 6, 0, 2101, 580, 300, 120, 24, 0, 31031, 8265, 4360, 2160, 720, 120, 0, 543607, 141246, 74130, 41160, 17640, 5040, 720, 0, 11012415, 2810437, 1456224, 861420, 430080, 161280, 40320, 5040
Offset: 0
Examples
Triangle T(n,k) begins: 1; 0, 1; 0, 3, 1; 0, 19, 6, 2; 0, 175, 51, 24, 6; 0, 2101, 580, 300, 120, 24; 0, 31031, 8265, 4360, 2160, 720, 120; 0, 543607, 141246, 74130, 41160, 17640, 5040, 720; ...
Links
- Alois P. Heinz, Rows n = 0..140, flattened
Crossrefs
Programs
-
Maple
with(combinat): b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i>n, 0, add((i-1)!^j*multinomial(n, n-i*j, i$j)/j!* b(n-i*j, i+1), j=0..n/i))) end: A:= (n, k)-> add(binomial(n-1, j-1)*n^(n-j)*b(j, k), j=0..n): T:= (n, k)-> `if`(k=0, `if`(n=0, 1, 0), A(n, k) -A(n, k+1)): seq(seq(T(n, k), k=0..n), n=0..12);
-
Mathematica
multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_] := b[n, i] = If[n == 0, 1, If[i>n, 0, Sum[(i-1)!^j*multinomial[n, {n-i*j, Sequence @@ Table[i, {j}]}]/j!* b[n-i*j, i+1], {j, 0, n/i}]]]; A[n_, k_] := Sum[Binomial[n-1, j-1]*n^(n-j)*b[j, k], {j, 0, n}]; T[n_, k_] := If[k == 0, If[n == 0, 1, 0], A[n, k] - A[n, k+1]]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Jan 06 2015, after Alois P. Heinz *)
Comments