cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A045531 Number of sticky functions: endofunctions of [n] having a fixed point.

Original entry on oeis.org

1, 3, 19, 175, 2101, 31031, 543607, 11012415, 253202761, 6513215599, 185311670611, 5777672071535, 195881901213181, 7174630439858727, 282325794823047151, 11878335717996660991, 532092356706983938321, 25283323623228812584415, 1270184310304975912766347
Offset: 1

Views

Author

Keywords

Comments

a(n) is also the number of functions f{1,2,...,n}->{1,2,...,n} with at least one element mapped to 1. - Geoffrey Critzer, Dec 10 2012
Equivalently, a(n) is the number of endofunctions with minimum 1. - Olivier Gérard, Aug 02 2016
Number of bargraphs of width n and height n. Equivalently: number of ordered n-tuples of positive integers such that the largest is n. Example: a(3) = 19 because we have 113, 123, 213, 223, 131, 132, 231, 232, 311, 312, 321, 322, 331, 332, 313, 323, 133, 233, and 333. - Emeric Deutsch, Jan 30 2017

Crossrefs

Column |a(n, 2)| of A039621. Row sums of triangle A055858.
Column k=1 of A246049.

Programs

  • Magma
    [n^n-(n-1)^n: n in [1..20] ]; // Vincenzo Librandi, May 07 2011
    
  • Mathematica
    Table[Sum[Binomial[n, i] (n - 1)^(n - i), {i, 1, n}], {n, 1, 20}]
  • Maxima
    a(n) = sum(k!*binomial(n-1,k-1)*stirling2(n,k),k,1,n); /* Vladimir Kruchinin, Mar 01 2014 */
  • PARI
    a(n)=n^n-(n-1)^n; \\ Charles R Greathouse IV, May 08 2011
    

Formula

a(n) = n^n - (n-1)^n.
E.g.f.: (T - x)/(T-T^2), where T=T(x) is Euler's tree function (see A000169).
With interpolated zeros, ceiling(n/2)^ceiling(n/2) - floor(n/2)^ceiling(n/2). - Paul Barry, Jul 13 2005
a(n) = A047969(n,n). - Alford Arnold, May 07 2005
a(n) = Sum_{i=1..n} binomial(n,i)*(i-1)^(i-1)*(n-i)^(n-i) = Sum_{i=1..n} binomial(n,i)*A000312(i-1)*A000312(n-i). - Vladimir Shevelev, Sep 30 2010
a(n) = Sum_{k=1..n} k!*binomial(n-1,k-1)*Stirling2(n,k). - Vladimir Kruchinin, Mar 01 2014
a(n) = A350454(n+1, 1) / (n+1). - Mélika Tebni, Dec 20 2022
Limit_{n->oo} a(n)/n^n = 1 - 1/e = A068996. - Luc Rousseau, Jan 20 2023

A241981 Number T(n,k) of endofunctions on [n] where the largest cycle length equals k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 3, 1, 0, 16, 9, 2, 0, 125, 93, 32, 6, 0, 1296, 1155, 500, 150, 24, 0, 16807, 17025, 8600, 3240, 864, 120, 0, 262144, 292383, 165690, 72030, 24696, 5880, 720, 0, 4782969, 5752131, 3568768, 1719060, 688128, 215040, 46080, 5040
Offset: 0

Views

Author

Alois P. Heinz, Aug 10 2014

Keywords

Comments

T(0,0) = 1 by convention.
In general, number of endofunctions on [n] where the largest cycle length equals k is asymptotic to (k*exp(H(k)) - (k-1)*exp(H(k-1))) * n^(n-1), where H(k) is the harmonic number A001008/A002805, k>=1. The multiplicative constant is (for big k) asymptotic to 2*k*exp(gamma), where gamma is the Euler-Mascheroni constant (see A001620 and A073004). - Vaclav Kotesovec, Aug 21 2014

Examples

			Triangle T(n,k) begins:
  1;
  0,      1;
  0,      3,      1;
  0,     16,      9,      2;
  0,    125,     93,     32,     6;
  0,   1296,   1155,    500,   150,    24;
  0,  16807,  17025,   8600,  3240,   864,  120;
  0, 262144, 292383, 165690, 72030, 24696, 5880, 720;
  ...
		

Crossrefs

Columns k=0-10 give: A000007, A000272(n+1) for n>0, A163951, A246213, A246214, A246215, A246216, A246217, A246218, A246219, A246220.
T(2n,n) gives A241982.
Row sums give A000312.
Main diagonal gives A000142(n-1) for n>0.

Programs

  • Maple
    with(combinat):
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add((i-1)!^j*multinomial(n, n-i*j, i$j)/j!*
          b(n-i*j, i-1), j=0..n/i)))
        end:
    A:= (n, k)-> add(binomial(n-1, j-1)*n^(n-j)*b(j, min(j, k)), j=0..n):
    T:= (n, k)-> A(n, k) -`if`(k=0, 0, A(n, k-1)):
    seq(seq(T(n, k), k=0..n), n=0..10);
  • Mathematica
    multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, Sum[(i-1)!^j*multinomial[n, {n-i*j, Sequence @@ Table[i, {j}]}]/j!*b[n-i*j, i-1], {j, 0, n/i}]]]; A[n_, k_] := Sum[Binomial[n-1, j-1]*n^(n-j)*b[j, Min[j, k]], {j, 0, n}]; T[0, 0] = 1; T[n_, k_] := A[n, k] - If[k == 0, 0, A[n, k-1]]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Jan 06 2015, after Alois P. Heinz *)

A243098 Number T(n,k) of endofunctions on [n] with all cycles of length k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 3, 1, 0, 16, 6, 2, 0, 125, 51, 24, 6, 0, 1296, 560, 300, 120, 24, 0, 16807, 7575, 4360, 2160, 720, 120, 0, 262144, 122052, 73710, 41160, 17640, 5040, 720, 0, 4782969, 2285353, 1430016, 861420, 430080, 161280, 40320, 5040
Offset: 0

Views

Author

Alois P. Heinz, Aug 18 2014

Keywords

Comments

T(0,0) = 1 by convention.

Examples

			Triangle T(n,k) begins:
  1;
  0,      1;
  0,      3,      1;
  0,     16,      6,     2;
  0,    125,     51,    24,     6;
  0,   1296,    560,   300,   120,    24;
  0,  16807,   7575,  4360,  2160,   720,  120;
  0, 262144, 122052, 73710, 41160, 17640, 5040, 720;
  ...
		

Crossrefs

Columns k=0-4 give: A000007, A000272(n+1) for n>0, A057817(n+1), 2*A060917, 6*A060918.
Row sums give A241980.
T(2n,n) gives A246050.
Main diagonal gives A000142(n-1) for n>0.

Programs

  • Maple
    with(combinat):
    T:= (n, k)-> `if`(k*n=0, `if`(k+n=0, 1, 0),
        add(binomial(n-1, j*k-1)*n^(n-j*k)*(k-1)!^j*
        multinomial(j*k, k$j, 0)/j!, j=0..n/k)):
    seq(seq(T(n, k), k=0..n), n=0..10);
  • Mathematica
    multinomial[n_, k_] := n!/Times @@ (k!); T[n_, k_] := If[k*n==0, If[k+n == 0, 1, 0], Sum[Binomial[n-1, j*k-1]*n^(n-j*k)*(k-1)!^j*multinomial[j*k, Append[Array[k&, j], 0]]/j!, {j, 0, n/k}]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 19 2017, translated from Maple *)

Formula

E.g.f. of column k>0: exp((-LambertW(-x))^k/k), e.g.f. of column k=0: 1.

A246050 Number of endofunctions on [2n] where the smallest cycle length equals n.

Original entry on oeis.org

1, 3, 51, 4360, 861420, 302472576, 165549605760, 130241382036480, 139296260790086400, 194427690066299289600, 343266609438110040883200, 747889929370001008617062400, 1971026055567996899374212710400, 6180432763819774878006029844480000
Offset: 0

Views

Author

Alois P. Heinz, Aug 11 2014

Keywords

Crossrefs

Programs

  • Maple
    with(combinat):
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i>n, 0,
          add((i-1)!^j*multinomial(n, n-i*j, i$j)/j!*
          b(n-i*j, i+1), j=0..n/i)))
        end:
    A:= (n, k)-> add(binomial(n-1, j-1)*n^(n-j)*b(j, k), j=0..n):
    a:= n-> `if`(n=0, 1, A(2*n, n) -A(2*n, n+1)):
    seq(a(n), n=0..15);
  • Mathematica
    multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_] := b[n, i] = If[n == 0, 1, If[i>n, 0, Sum[(i-1)!^j*multinomial[n, Join[{n-i*j}, Array[i&, j]]]/j!*b[n-i*j, i+1], {j, 0, n/i}]]]; A[n_, k_] := Sum[Binomial[n-1, j-1]*n^(n-j)*b[j, k], {j, 0, n}]; a[n_] := If[n == 0, 1, A[2*n, n] - A[2*n, n+1]]; Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Feb 11 2015, after Alois P. Heinz *)

Formula

a(n) = A246049(2n,n) = A243098(2n,n).
a(n) ~ 2^(3*n-1/2) * n^(2*n-1) / exp(n). - Vaclav Kotesovec, Aug 19 2014

A246189 Number of endofunctions on [n] where the smallest cycle length equals 2.

Original entry on oeis.org

1, 6, 51, 580, 8265, 141246, 2810437, 63748728, 1622579985, 45775778950, 1417347491241, 47776074289164, 1741386177576409, 68238497945688630, 2860625245955274225, 127736893134458097136, 6052712065187733972513, 303322427195785592735502, 16028016368907840953165425
Offset: 2

Views

Author

Alois P. Heinz, Aug 18 2014

Keywords

Crossrefs

Column k=2 of A246049.

Programs

  • Maple
    with(combinat):
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i>n, 0,
          add((i-1)!^j*multinomial(n, n-i*j, i$j)/j!*
          b(n-i*j, i+1), j=0..n/i)))
        end:
    A:= (n, k)-> add(binomial(n-1, j-1)*n^(n-j)*b(j, k), j=0..n):
    a:= n-> A(n, 2) -A(n, 3):
    seq(a(n), n=2..25);
  • Mathematica
    multinomial[n_, k_List] := n!/Times @@ (k!);
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i>n, 0, Sum[(i - 1)!^j multinomial[ n, Join[{n - i*j}, Table[i, {j}]]]/j! b[n - i*j, i + 1], {j, 0, n/i}]]];
    A[n_, k_] := Sum[Binomial[n - 1, j - 1] n^(n - j) b[j, k], {j, 0, n}];
    a[n_] := A[n, 2] - A[n, 3];
    a /@ Range[2, 25] (* Jean-François Alcover, Dec 28 2020, after Alois P. Heinz *)

Formula

a(n) ~ (exp(-1) - exp(-3/2)) * n^n. - Vaclav Kotesovec, Aug 21 2014

A246190 Number of endofunctions on [n] where the smallest cycle length equals 3.

Original entry on oeis.org

2, 24, 300, 4360, 74130, 1456224, 32562152, 817596000, 22785399450, 697951656160, 23306666102148, 842567564800416, 32781106696806650, 1365579024023558400, 60639189588419033040, 2859165143013913590016, 142651621238828972159538, 7508140027468431374563200
Offset: 3

Views

Author

Alois P. Heinz, Aug 18 2014

Keywords

Crossrefs

Column k=3 of A246049.

Programs

  • Maple
    with(combinat):
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i>n, 0,
          add((i-1)!^j*multinomial(n, n-i*j, i$j)/j!*
          b(n-i*j, i+1), j=0..n/i)))
        end:
    A:= (n, k)-> add(binomial(n-1, j-1)*n^(n-j)*b(j, k), j=0..n):
    a:= n-> A(n, 3) -A(n, 4):
    seq(a(n), n=3..25);
  • Mathematica
    multinomial[n_, k_List] := n!/Times @@ (k!);
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i>n, 0, Sum[(i - 1)!^j multinomial[n, Join[{n - i*j}, Table[i, {j}]]]/j! b[n - i*j, i + 1], {j, 0, n/i}]]];
    A[n_, k_] := Sum[Binomial[n - 1, j - 1] n^(n - j) b[j, k], {j, 0, n}];
    a[n_] := A[n, 3] - A[n, 4];
    a /@ Range[3, 25] (* Jean-François Alcover, Dec 28 2020, after Alois P. Heinz *)

Formula

a(n) ~ (exp(-3/2) - exp(-11/6)) * n^n. - Vaclav Kotesovec, Aug 21 2014

A246191 Number of endofunctions on [n] where the smallest cycle length equals 4.

Original entry on oeis.org

6, 120, 2160, 41160, 861420, 19949328, 510320160, 14348862000, 440879024520, 14716697990280, 530761366078944, 20577610843203960, 853717568817968400, 37746072677473752480, 1771994498414094109440, 88032162789004128733152, 4614300279345812506938720
Offset: 4

Views

Author

Alois P. Heinz, Aug 18 2014

Keywords

Crossrefs

Column k=4 of A246049.

Programs

  • Maple
    with(combinat):
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i>n, 0,
          add((i-1)!^j*multinomial(n, n-i*j, i$j)/j!*
          b(n-i*j, i+1), j=0..n/i)))
        end:
    A:= (n, k)-> add(binomial(n-1, j-1)*n^(n-j)*b(j, k), j=0..n):
    a:= n-> A(n, 4) -A(n, 5):
    seq(a(n), n=4..25);
  • Mathematica
    multinomial[n_, k_List] := n!/Times @@ (k!);
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i>n, 0, Sum[(i - 1)!^j multinomial[n, Join[{n - i*j}, Table[i, {j}]]]/j! b[n - i*j, i + 1], {j, 0, n/i}]]];
    A[n_, k_] := Sum[Binomial[n - 1, j - 1] n^(n - j) b[j, k], {j, 0, n}];
    a[n_] := A[n, 4] - A[n, 5];
    a /@ Range[4, 25] (* Jean-François Alcover, Dec 28 2020, after Alois P. Heinz *)

Formula

a(n) ~ (exp(-11/6) - exp(-25/12)) * n^n. - Vaclav Kotesovec, Aug 21 2014

A246192 Number of endofunctions on [n] where the smallest cycle length equals 5.

Original entry on oeis.org

24, 720, 17640, 430080, 11022480, 302472576, 8937981360, 284552040960, 9743091569640, 357820740076800, 14051646110285784, 588177615908413440, 26161789829441054880, 1232890909824506204160, 61387038018996808785120, 3221070809733138102829056
Offset: 5

Views

Author

Alois P. Heinz, Aug 18 2014

Keywords

Crossrefs

Column k=5 of A246049.

Programs

  • Maple
    with(combinat):
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i>n, 0,
          add((i-1)!^j*multinomial(n, n-i*j, i$j)/j!*
          b(n-i*j, i+1), j=0..n/i)))
        end:
    A:= (n, k)-> add(binomial(n-1, j-1)*n^(n-j)*b(j, k), j=0..n):
    a:= n-> A(n, 5) -A(n, 6):
    seq(a(n), n=5..25);
  • Mathematica
    multinomial[n_, k_List] := n!/Times @@ (k!);
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i>n, 0, Sum[(i - 1)!^j multinomial[n, Join[{n - i*j}, Table[i, {j}]]]/j! b[n - i*j, i + 1], {j, 0, n/i}]]];
    A[n_, k_] :=
     Sum[Binomial[n - 1, j - 1] n^(n - j) b[j, k], {j, 0, n}];
    a[n_] := A[n, 5] - A[n, 6];
    a /@ Range[5, 25] (* Jean-François Alcover, Dec 28 2020, after Alois P. Heinz *)

Formula

a(n) ~ (exp(-25/12) - exp(-137/60)) * n^n. - Vaclav Kotesovec, Aug 21 2014

A246193 Number of endofunctions on [n] where the smallest cycle length equals 6.

Original entry on oeis.org

120, 5040, 161280, 4898880, 151200000, 4870182240, 165549605760, 5964805154880, 228051369786240, 9247246914906000, 397146441431900160, 18033691478872567680, 864117601222345666560, 43606402916521420059840, 2312912761606956925440000, 128696545326829348772023680
Offset: 6

Views

Author

Alois P. Heinz, Aug 18 2014

Keywords

Crossrefs

Column k=6 of A246049.

Programs

  • Maple
    with(combinat):
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i>n, 0,
          add((i-1)!^j*multinomial(n, n-i*j, i$j)/j!*
          b(n-i*j, i+1), j=0..n/i)))
        end:
    A:= (n, k)-> add(binomial(n-1, j-1)*n^(n-j)*b(j, k), j=0..n):
    a:= n-> A(n, 6) -A(n, 7):
    seq(a(n), n=6..25);

Formula

a(n) ~ (exp(-137/60) - exp(-49/20)) * n^n. - Vaclav Kotesovec, Aug 21 2014

A246194 Number of endofunctions on [n] where the smallest cycle length equals 7.

Original entry on oeis.org

720, 40320, 1632960, 60480000, 2213719200, 82771476480, 3211179491520, 130241382036480, 5541589755702000, 247667354552217600, 11627089698327143040, 573008938660751523840, 29613698207957813302080, 1602975684200327700480000, 90757379602253683020931200
Offset: 7

Views

Author

Alois P. Heinz, Aug 18 2014

Keywords

Crossrefs

Column k=7 of A246049.

Programs

  • Maple
    with(combinat):
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i>n, 0,
          add((i-1)!^j*multinomial(n, n-i*j, i$j)/j!*
          b(n-i*j, i+1), j=0..n/i)))
        end:
    A:= (n, k)-> add(binomial(n-1, j-1)*n^(n-j)*b(j, k), j=0..n):
    a:= n-> A(n, 7) -A(n, 8):
    seq(a(n), n=7..25);

Formula

a(n) ~ (exp(-49/20) - exp(-363/140)) * n^n. - Vaclav Kotesovec, Aug 21 2014
Showing 1-10 of 13 results. Next