A045531
Number of sticky functions: endofunctions of [n] having a fixed point.
Original entry on oeis.org
1, 3, 19, 175, 2101, 31031, 543607, 11012415, 253202761, 6513215599, 185311670611, 5777672071535, 195881901213181, 7174630439858727, 282325794823047151, 11878335717996660991, 532092356706983938321, 25283323623228812584415, 1270184310304975912766347
Offset: 1
-
[n^n-(n-1)^n: n in [1..20] ]; // Vincenzo Librandi, May 07 2011
-
Table[Sum[Binomial[n, i] (n - 1)^(n - i), {i, 1, n}], {n, 1, 20}]
-
a(n) = sum(k!*binomial(n-1,k-1)*stirling2(n,k),k,1,n); /* Vladimir Kruchinin, Mar 01 2014 */
-
a(n)=n^n-(n-1)^n; \\ Charles R Greathouse IV, May 08 2011
A241981
Number T(n,k) of endofunctions on [n] where the largest cycle length equals k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 3, 1, 0, 16, 9, 2, 0, 125, 93, 32, 6, 0, 1296, 1155, 500, 150, 24, 0, 16807, 17025, 8600, 3240, 864, 120, 0, 262144, 292383, 165690, 72030, 24696, 5880, 720, 0, 4782969, 5752131, 3568768, 1719060, 688128, 215040, 46080, 5040
Offset: 0
Triangle T(n,k) begins:
1;
0, 1;
0, 3, 1;
0, 16, 9, 2;
0, 125, 93, 32, 6;
0, 1296, 1155, 500, 150, 24;
0, 16807, 17025, 8600, 3240, 864, 120;
0, 262144, 292383, 165690, 72030, 24696, 5880, 720;
...
Columns k=0-10 give:
A000007,
A000272(n+1) for n>0,
A163951,
A246213,
A246214,
A246215,
A246216,
A246217,
A246218,
A246219,
A246220.
Main diagonal gives
A000142(n-1) for n>0.
-
with(combinat):
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add((i-1)!^j*multinomial(n, n-i*j, i$j)/j!*
b(n-i*j, i-1), j=0..n/i)))
end:
A:= (n, k)-> add(binomial(n-1, j-1)*n^(n-j)*b(j, min(j, k)), j=0..n):
T:= (n, k)-> A(n, k) -`if`(k=0, 0, A(n, k-1)):
seq(seq(T(n, k), k=0..n), n=0..10);
-
multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, Sum[(i-1)!^j*multinomial[n, {n-i*j, Sequence @@ Table[i, {j}]}]/j!*b[n-i*j, i-1], {j, 0, n/i}]]]; A[n_, k_] := Sum[Binomial[n-1, j-1]*n^(n-j)*b[j, Min[j, k]], {j, 0, n}]; T[0, 0] = 1; T[n_, k_] := A[n, k] - If[k == 0, 0, A[n, k-1]]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Jan 06 2015, after Alois P. Heinz *)
A243098
Number T(n,k) of endofunctions on [n] with all cycles of length k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 3, 1, 0, 16, 6, 2, 0, 125, 51, 24, 6, 0, 1296, 560, 300, 120, 24, 0, 16807, 7575, 4360, 2160, 720, 120, 0, 262144, 122052, 73710, 41160, 17640, 5040, 720, 0, 4782969, 2285353, 1430016, 861420, 430080, 161280, 40320, 5040
Offset: 0
Triangle T(n,k) begins:
1;
0, 1;
0, 3, 1;
0, 16, 6, 2;
0, 125, 51, 24, 6;
0, 1296, 560, 300, 120, 24;
0, 16807, 7575, 4360, 2160, 720, 120;
0, 262144, 122052, 73710, 41160, 17640, 5040, 720;
...
Main diagonal gives
A000142(n-1) for n>0.
-
with(combinat):
T:= (n, k)-> `if`(k*n=0, `if`(k+n=0, 1, 0),
add(binomial(n-1, j*k-1)*n^(n-j*k)*(k-1)!^j*
multinomial(j*k, k$j, 0)/j!, j=0..n/k)):
seq(seq(T(n, k), k=0..n), n=0..10);
-
multinomial[n_, k_] := n!/Times @@ (k!); T[n_, k_] := If[k*n==0, If[k+n == 0, 1, 0], Sum[Binomial[n-1, j*k-1]*n^(n-j*k)*(k-1)!^j*multinomial[j*k, Append[Array[k&, j], 0]]/j!, {j, 0, n/k}]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 19 2017, translated from Maple *)
A246050
Number of endofunctions on [2n] where the smallest cycle length equals n.
Original entry on oeis.org
1, 3, 51, 4360, 861420, 302472576, 165549605760, 130241382036480, 139296260790086400, 194427690066299289600, 343266609438110040883200, 747889929370001008617062400, 1971026055567996899374212710400, 6180432763819774878006029844480000
Offset: 0
-
with(combinat):
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i>n, 0,
add((i-1)!^j*multinomial(n, n-i*j, i$j)/j!*
b(n-i*j, i+1), j=0..n/i)))
end:
A:= (n, k)-> add(binomial(n-1, j-1)*n^(n-j)*b(j, k), j=0..n):
a:= n-> `if`(n=0, 1, A(2*n, n) -A(2*n, n+1)):
seq(a(n), n=0..15);
-
multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_] := b[n, i] = If[n == 0, 1, If[i>n, 0, Sum[(i-1)!^j*multinomial[n, Join[{n-i*j}, Array[i&, j]]]/j!*b[n-i*j, i+1], {j, 0, n/i}]]]; A[n_, k_] := Sum[Binomial[n-1, j-1]*n^(n-j)*b[j, k], {j, 0, n}]; a[n_] := If[n == 0, 1, A[2*n, n] - A[2*n, n+1]]; Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Feb 11 2015, after Alois P. Heinz *)
A246189
Number of endofunctions on [n] where the smallest cycle length equals 2.
Original entry on oeis.org
1, 6, 51, 580, 8265, 141246, 2810437, 63748728, 1622579985, 45775778950, 1417347491241, 47776074289164, 1741386177576409, 68238497945688630, 2860625245955274225, 127736893134458097136, 6052712065187733972513, 303322427195785592735502, 16028016368907840953165425
Offset: 2
-
with(combinat):
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i>n, 0,
add((i-1)!^j*multinomial(n, n-i*j, i$j)/j!*
b(n-i*j, i+1), j=0..n/i)))
end:
A:= (n, k)-> add(binomial(n-1, j-1)*n^(n-j)*b(j, k), j=0..n):
a:= n-> A(n, 2) -A(n, 3):
seq(a(n), n=2..25);
-
multinomial[n_, k_List] := n!/Times @@ (k!);
b[n_, i_] := b[n, i] = If[n==0, 1, If[i>n, 0, Sum[(i - 1)!^j multinomial[ n, Join[{n - i*j}, Table[i, {j}]]]/j! b[n - i*j, i + 1], {j, 0, n/i}]]];
A[n_, k_] := Sum[Binomial[n - 1, j - 1] n^(n - j) b[j, k], {j, 0, n}];
a[n_] := A[n, 2] - A[n, 3];
a /@ Range[2, 25] (* Jean-François Alcover, Dec 28 2020, after Alois P. Heinz *)
A246190
Number of endofunctions on [n] where the smallest cycle length equals 3.
Original entry on oeis.org
2, 24, 300, 4360, 74130, 1456224, 32562152, 817596000, 22785399450, 697951656160, 23306666102148, 842567564800416, 32781106696806650, 1365579024023558400, 60639189588419033040, 2859165143013913590016, 142651621238828972159538, 7508140027468431374563200
Offset: 3
-
with(combinat):
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i>n, 0,
add((i-1)!^j*multinomial(n, n-i*j, i$j)/j!*
b(n-i*j, i+1), j=0..n/i)))
end:
A:= (n, k)-> add(binomial(n-1, j-1)*n^(n-j)*b(j, k), j=0..n):
a:= n-> A(n, 3) -A(n, 4):
seq(a(n), n=3..25);
-
multinomial[n_, k_List] := n!/Times @@ (k!);
b[n_, i_] := b[n, i] = If[n==0, 1, If[i>n, 0, Sum[(i - 1)!^j multinomial[n, Join[{n - i*j}, Table[i, {j}]]]/j! b[n - i*j, i + 1], {j, 0, n/i}]]];
A[n_, k_] := Sum[Binomial[n - 1, j - 1] n^(n - j) b[j, k], {j, 0, n}];
a[n_] := A[n, 3] - A[n, 4];
a /@ Range[3, 25] (* Jean-François Alcover, Dec 28 2020, after Alois P. Heinz *)
A246191
Number of endofunctions on [n] where the smallest cycle length equals 4.
Original entry on oeis.org
6, 120, 2160, 41160, 861420, 19949328, 510320160, 14348862000, 440879024520, 14716697990280, 530761366078944, 20577610843203960, 853717568817968400, 37746072677473752480, 1771994498414094109440, 88032162789004128733152, 4614300279345812506938720
Offset: 4
-
with(combinat):
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i>n, 0,
add((i-1)!^j*multinomial(n, n-i*j, i$j)/j!*
b(n-i*j, i+1), j=0..n/i)))
end:
A:= (n, k)-> add(binomial(n-1, j-1)*n^(n-j)*b(j, k), j=0..n):
a:= n-> A(n, 4) -A(n, 5):
seq(a(n), n=4..25);
-
multinomial[n_, k_List] := n!/Times @@ (k!);
b[n_, i_] := b[n, i] = If[n==0, 1, If[i>n, 0, Sum[(i - 1)!^j multinomial[n, Join[{n - i*j}, Table[i, {j}]]]/j! b[n - i*j, i + 1], {j, 0, n/i}]]];
A[n_, k_] := Sum[Binomial[n - 1, j - 1] n^(n - j) b[j, k], {j, 0, n}];
a[n_] := A[n, 4] - A[n, 5];
a /@ Range[4, 25] (* Jean-François Alcover, Dec 28 2020, after Alois P. Heinz *)
A246192
Number of endofunctions on [n] where the smallest cycle length equals 5.
Original entry on oeis.org
24, 720, 17640, 430080, 11022480, 302472576, 8937981360, 284552040960, 9743091569640, 357820740076800, 14051646110285784, 588177615908413440, 26161789829441054880, 1232890909824506204160, 61387038018996808785120, 3221070809733138102829056
Offset: 5
-
with(combinat):
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i>n, 0,
add((i-1)!^j*multinomial(n, n-i*j, i$j)/j!*
b(n-i*j, i+1), j=0..n/i)))
end:
A:= (n, k)-> add(binomial(n-1, j-1)*n^(n-j)*b(j, k), j=0..n):
a:= n-> A(n, 5) -A(n, 6):
seq(a(n), n=5..25);
-
multinomial[n_, k_List] := n!/Times @@ (k!);
b[n_, i_] := b[n, i] = If[n==0, 1, If[i>n, 0, Sum[(i - 1)!^j multinomial[n, Join[{n - i*j}, Table[i, {j}]]]/j! b[n - i*j, i + 1], {j, 0, n/i}]]];
A[n_, k_] :=
Sum[Binomial[n - 1, j - 1] n^(n - j) b[j, k], {j, 0, n}];
a[n_] := A[n, 5] - A[n, 6];
a /@ Range[5, 25] (* Jean-François Alcover, Dec 28 2020, after Alois P. Heinz *)
A246193
Number of endofunctions on [n] where the smallest cycle length equals 6.
Original entry on oeis.org
120, 5040, 161280, 4898880, 151200000, 4870182240, 165549605760, 5964805154880, 228051369786240, 9247246914906000, 397146441431900160, 18033691478872567680, 864117601222345666560, 43606402916521420059840, 2312912761606956925440000, 128696545326829348772023680
Offset: 6
-
with(combinat):
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i>n, 0,
add((i-1)!^j*multinomial(n, n-i*j, i$j)/j!*
b(n-i*j, i+1), j=0..n/i)))
end:
A:= (n, k)-> add(binomial(n-1, j-1)*n^(n-j)*b(j, k), j=0..n):
a:= n-> A(n, 6) -A(n, 7):
seq(a(n), n=6..25);
A246194
Number of endofunctions on [n] where the smallest cycle length equals 7.
Original entry on oeis.org
720, 40320, 1632960, 60480000, 2213719200, 82771476480, 3211179491520, 130241382036480, 5541589755702000, 247667354552217600, 11627089698327143040, 573008938660751523840, 29613698207957813302080, 1602975684200327700480000, 90757379602253683020931200
Offset: 7
-
with(combinat):
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i>n, 0,
add((i-1)!^j*multinomial(n, n-i*j, i$j)/j!*
b(n-i*j, i+1), j=0..n/i)))
end:
A:= (n, k)-> add(binomial(n-1, j-1)*n^(n-j)*b(j, k), j=0..n):
a:= n-> A(n, 7) -A(n, 8):
seq(a(n), n=7..25);
Showing 1-10 of 13 results.
Comments