cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A246049 Number T(n,k) of endofunctions on [n] where the smallest cycle length equals k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 3, 1, 0, 19, 6, 2, 0, 175, 51, 24, 6, 0, 2101, 580, 300, 120, 24, 0, 31031, 8265, 4360, 2160, 720, 120, 0, 543607, 141246, 74130, 41160, 17640, 5040, 720, 0, 11012415, 2810437, 1456224, 861420, 430080, 161280, 40320, 5040
Offset: 0

Views

Author

Alois P. Heinz, Aug 11 2014

Keywords

Comments

T(0,0) = 1 by convention.
In general, number of endofunctions on [n] where the smallest cycle length equals k is asymptotic to (exp(-H(k-1)) - exp(-H(k))) * n^n, where H(k) is the harmonic number A001008/A002805, k>=1. - Vaclav Kotesovec, Aug 21 2014

Examples

			Triangle T(n,k) begins:
  1;
  0,      1;
  0,      3,      1;
  0,     19,      6,     2;
  0,    175,     51,    24,     6;
  0,   2101,    580,   300,   120,    24;
  0,  31031,   8265,  4360,  2160,   720,  120;
  0, 543607, 141246, 74130, 41160, 17640, 5040, 720;
  ...
		

Crossrefs

T(2n,n) gives A246050.
Row sums give A000312.
Main diagonal gives A000142(n-1) for n>0.

Programs

  • Maple
    with(combinat):
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i>n, 0,
          add((i-1)!^j*multinomial(n, n-i*j, i$j)/j!*
          b(n-i*j, i+1), j=0..n/i)))
        end:
    A:= (n, k)-> add(binomial(n-1, j-1)*n^(n-j)*b(j, k), j=0..n):
    T:= (n, k)-> `if`(k=0, `if`(n=0, 1, 0), A(n, k) -A(n, k+1)):
    seq(seq(T(n, k), k=0..n), n=0..12);
  • Mathematica
    multinomial[n_, k_List] := n!/Times @@ (k!);
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i>n, 0,
          Sum[(i-1)!^j*multinomial[n, {n-i*j, Sequence @@ Table[i, {j}]}]/j!*
          b[n-i*j, i+1], {j, 0, n/i}]]];
    A[n_, k_] := Sum[Binomial[n-1, j-1]*n^(n-j)*b[j, k], {j, 0, n}];
    T[n_, k_] := If[k == 0, If[n == 0, 1, 0], A[n, k] - A[n, k+1]];
    Table[Table[T[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Jan 06 2015, after Alois P. Heinz *)

A243098 Number T(n,k) of endofunctions on [n] with all cycles of length k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 3, 1, 0, 16, 6, 2, 0, 125, 51, 24, 6, 0, 1296, 560, 300, 120, 24, 0, 16807, 7575, 4360, 2160, 720, 120, 0, 262144, 122052, 73710, 41160, 17640, 5040, 720, 0, 4782969, 2285353, 1430016, 861420, 430080, 161280, 40320, 5040
Offset: 0

Views

Author

Alois P. Heinz, Aug 18 2014

Keywords

Comments

T(0,0) = 1 by convention.

Examples

			Triangle T(n,k) begins:
  1;
  0,      1;
  0,      3,      1;
  0,     16,      6,     2;
  0,    125,     51,    24,     6;
  0,   1296,    560,   300,   120,    24;
  0,  16807,   7575,  4360,  2160,   720,  120;
  0, 262144, 122052, 73710, 41160, 17640, 5040, 720;
  ...
		

Crossrefs

Columns k=0-4 give: A000007, A000272(n+1) for n>0, A057817(n+1), 2*A060917, 6*A060918.
Row sums give A241980.
T(2n,n) gives A246050.
Main diagonal gives A000142(n-1) for n>0.

Programs

  • Maple
    with(combinat):
    T:= (n, k)-> `if`(k*n=0, `if`(k+n=0, 1, 0),
        add(binomial(n-1, j*k-1)*n^(n-j*k)*(k-1)!^j*
        multinomial(j*k, k$j, 0)/j!, j=0..n/k)):
    seq(seq(T(n, k), k=0..n), n=0..10);
  • Mathematica
    multinomial[n_, k_] := n!/Times @@ (k!); T[n_, k_] := If[k*n==0, If[k+n == 0, 1, 0], Sum[Binomial[n-1, j*k-1]*n^(n-j*k)*(k-1)!^j*multinomial[j*k, Append[Array[k&, j], 0]]/j!, {j, 0, n/k}]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 19 2017, translated from Maple *)

Formula

E.g.f. of column k>0: exp((-LambertW(-x))^k/k), e.g.f. of column k=0: 1.

A241982 Number of endofunctions on [2n] where the largest cycle length equals n.

Original entry on oeis.org

1, 3, 93, 8600, 1719060, 604727424, 331079253120, 260480095349760, 278592031202284800, 388855261570122547200, 686533182382689959116800, 1495779844806108697677004800, 3942052104672989614027181260800, 12360865524060039746012601384960000
Offset: 0

Views

Author

Alois P. Heinz, Aug 10 2014

Keywords

Examples

			a(1) = 3: (1,1), (1,2), (2,2).
		

Crossrefs

Programs

  • Maple
    with(combinat):
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add((i-1)!^j*multinomial(n, n-i*j, i$j)/j!*
          b(n-i*j, i-1), j=0..n/i)))
        end:
    A:= (n, k)-> add(binomial(n-1, j-1)*n^(n-j)*b(j, min(j, k)), j=0..n):
    a:= n-> `if`(n=0, 1, A(2*n, n) -A(2*n, n-1)):
    seq(a(n), n=0..15);
  • Mathematica
    multinomial[n_, k_List] := n!/Times @@ (k!);
    b[n_, i_] := b[n, i] = Which[n==0, 1, i<1, 0, True, Sum[(i-1)!^j* multinomial[n, Join[{n-i*j}, Table[i, {j}]]]/j!*b[n-i*j, i-1], {j, 0, n/i} ] ];
    A[n_, k_] := Sum[Binomial[n-1, j-1]*n^(n-j)*b[j, Min[j, k]], {j, 0, n}];
    a[n_] := If[n == 0, 1, A[2n, n] - A[2n, n-1]];
    Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Apr 01 2017, translated from Maple *)

Formula

a(n) = A241981(2n,n).
a(n) ~ 2^(3*n+1/2) * n^(2*n-1) / exp(n). - Vaclav Kotesovec, Aug 19 2014
Showing 1-3 of 3 results.