cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A246049 Number T(n,k) of endofunctions on [n] where the smallest cycle length equals k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 3, 1, 0, 19, 6, 2, 0, 175, 51, 24, 6, 0, 2101, 580, 300, 120, 24, 0, 31031, 8265, 4360, 2160, 720, 120, 0, 543607, 141246, 74130, 41160, 17640, 5040, 720, 0, 11012415, 2810437, 1456224, 861420, 430080, 161280, 40320, 5040
Offset: 0

Views

Author

Alois P. Heinz, Aug 11 2014

Keywords

Comments

T(0,0) = 1 by convention.
In general, number of endofunctions on [n] where the smallest cycle length equals k is asymptotic to (exp(-H(k-1)) - exp(-H(k))) * n^n, where H(k) is the harmonic number A001008/A002805, k>=1. - Vaclav Kotesovec, Aug 21 2014

Examples

			Triangle T(n,k) begins:
  1;
  0,      1;
  0,      3,      1;
  0,     19,      6,     2;
  0,    175,     51,    24,     6;
  0,   2101,    580,   300,   120,    24;
  0,  31031,   8265,  4360,  2160,   720,  120;
  0, 543607, 141246, 74130, 41160, 17640, 5040, 720;
  ...
		

Crossrefs

T(2n,n) gives A246050.
Row sums give A000312.
Main diagonal gives A000142(n-1) for n>0.

Programs

  • Maple
    with(combinat):
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i>n, 0,
          add((i-1)!^j*multinomial(n, n-i*j, i$j)/j!*
          b(n-i*j, i+1), j=0..n/i)))
        end:
    A:= (n, k)-> add(binomial(n-1, j-1)*n^(n-j)*b(j, k), j=0..n):
    T:= (n, k)-> `if`(k=0, `if`(n=0, 1, 0), A(n, k) -A(n, k+1)):
    seq(seq(T(n, k), k=0..n), n=0..12);
  • Mathematica
    multinomial[n_, k_List] := n!/Times @@ (k!);
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i>n, 0,
          Sum[(i-1)!^j*multinomial[n, {n-i*j, Sequence @@ Table[i, {j}]}]/j!*
          b[n-i*j, i+1], {j, 0, n/i}]]];
    A[n_, k_] := Sum[Binomial[n-1, j-1]*n^(n-j)*b[j, k], {j, 0, n}];
    T[n_, k_] := If[k == 0, If[n == 0, 1, 0], A[n, k] - A[n, k+1]];
    Table[Table[T[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Jan 06 2015, after Alois P. Heinz *)

A243098 Number T(n,k) of endofunctions on [n] with all cycles of length k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 3, 1, 0, 16, 6, 2, 0, 125, 51, 24, 6, 0, 1296, 560, 300, 120, 24, 0, 16807, 7575, 4360, 2160, 720, 120, 0, 262144, 122052, 73710, 41160, 17640, 5040, 720, 0, 4782969, 2285353, 1430016, 861420, 430080, 161280, 40320, 5040
Offset: 0

Views

Author

Alois P. Heinz, Aug 18 2014

Keywords

Comments

T(0,0) = 1 by convention.

Examples

			Triangle T(n,k) begins:
  1;
  0,      1;
  0,      3,      1;
  0,     16,      6,     2;
  0,    125,     51,    24,     6;
  0,   1296,    560,   300,   120,    24;
  0,  16807,   7575,  4360,  2160,   720,  120;
  0, 262144, 122052, 73710, 41160, 17640, 5040, 720;
  ...
		

Crossrefs

Columns k=0-4 give: A000007, A000272(n+1) for n>0, A057817(n+1), 2*A060917, 6*A060918.
Row sums give A241980.
T(2n,n) gives A246050.
Main diagonal gives A000142(n-1) for n>0.

Programs

  • Maple
    with(combinat):
    T:= (n, k)-> `if`(k*n=0, `if`(k+n=0, 1, 0),
        add(binomial(n-1, j*k-1)*n^(n-j*k)*(k-1)!^j*
        multinomial(j*k, k$j, 0)/j!, j=0..n/k)):
    seq(seq(T(n, k), k=0..n), n=0..10);
  • Mathematica
    multinomial[n_, k_] := n!/Times @@ (k!); T[n_, k_] := If[k*n==0, If[k+n == 0, 1, 0], Sum[Binomial[n-1, j*k-1]*n^(n-j*k)*(k-1)!^j*multinomial[j*k, Append[Array[k&, j], 0]]/j!, {j, 0, n/k}]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 19 2017, translated from Maple *)

Formula

E.g.f. of column k>0: exp((-LambertW(-x))^k/k), e.g.f. of column k=0: 1.

A163951 The number of functions in a finite set for which the sequence of composition powers ends in a length 2 cycle.

Original entry on oeis.org

0, 0, 1, 9, 93, 1155, 17025, 292383, 5752131, 127790505, 3167896005, 86756071545, 2602658092419, 84917405260779, 2994675198208785, 113538315994418175, 4606094297461892895, 199122610252964803857, 9139190793845641425261, 443881600924216704982425
Offset: 0

Views

Author

Carlos Alves, Aug 06 2009

Keywords

Comments

The number of functions in a finite set {1,..,n} for which the sequence of composition powers ends in a fixed point gave terms of the sequence A000272(n-1)=(n+1)^(n-1).
This is to be seen as a conjecture, and the sequence ending with a length 2 cycle does not seem to have such an easy expression.

Examples

			Any transposition (or disjoint combination) is one element to be counted.
When n=2, there is only one, and a(2)=1. When n=3, there are only 3 transpositions, but there are other 6 elements, for instance
f:{1,2,3}->{2,1,1} gives fof:{1,2,3}->{1,2,2} and fofof=f (cycle 2),
(the others are similar), thus giving a(3)=9.
		

Crossrefs

Column k=2 of A222029 and of A241981.

Programs

  • Maple
    with(combinat):
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add((i-1)!^j*multinomial(n, n-i*j, i$j)/j!*
          b(n-i*j, i-1), j=0..n/i)))
        end:
    A:= (n, k)-> add(binomial(n-1, j-1)*n^(n-j)*b(j, min(j, k)), j=0..n):
    a:= n-> A(n, 2) -A(n, 1):
    seq(a(n), n=0..25);  # Alois P. Heinz, Aug 19 2014
  • Mathematica
    multinomial[n_, k_List] := n!/Times @@ (k!);
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, Sum[(i - 1)!^j*multinomial[ n, Join[{n - i*j}, Table[i, j]]]/j!*b[n - i*j, i - 1], {j, 0, n/i}]]];
    A[n_, k_] :=  Sum[Binomial[n-1, j-1]*n^(n-j)*b[j, Min[j, k]], {j, 0, n}];
    a[0] = 0; a[n_] := A[n, 2] - A[n, 1];
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jun 05 2018, after Alois P. Heinz *)

Formula

a(n) ~ (2*exp(3/2)-exp(1)) * n^(n-1). - Vaclav Kotesovec, Aug 20 2014

Extensions

a(0), a(8)-a(19) added and A246212 merged into this sequence by Alois P. Heinz, Aug 14 2017

A241982 Number of endofunctions on [2n] where the largest cycle length equals n.

Original entry on oeis.org

1, 3, 93, 8600, 1719060, 604727424, 331079253120, 260480095349760, 278592031202284800, 388855261570122547200, 686533182382689959116800, 1495779844806108697677004800, 3942052104672989614027181260800, 12360865524060039746012601384960000
Offset: 0

Views

Author

Alois P. Heinz, Aug 10 2014

Keywords

Examples

			a(1) = 3: (1,1), (1,2), (2,2).
		

Crossrefs

Programs

  • Maple
    with(combinat):
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add((i-1)!^j*multinomial(n, n-i*j, i$j)/j!*
          b(n-i*j, i-1), j=0..n/i)))
        end:
    A:= (n, k)-> add(binomial(n-1, j-1)*n^(n-j)*b(j, min(j, k)), j=0..n):
    a:= n-> `if`(n=0, 1, A(2*n, n) -A(2*n, n-1)):
    seq(a(n), n=0..15);
  • Mathematica
    multinomial[n_, k_List] := n!/Times @@ (k!);
    b[n_, i_] := b[n, i] = Which[n==0, 1, i<1, 0, True, Sum[(i-1)!^j* multinomial[n, Join[{n-i*j}, Table[i, {j}]]]/j!*b[n-i*j, i-1], {j, 0, n/i} ] ];
    A[n_, k_] := Sum[Binomial[n-1, j-1]*n^(n-j)*b[j, Min[j, k]], {j, 0, n}];
    a[n_] := If[n == 0, 1, A[2n, n] - A[2n, n-1]];
    Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Apr 01 2017, translated from Maple *)

Formula

a(n) = A241981(2n,n).
a(n) ~ 2^(3*n+1/2) * n^(2*n-1) / exp(n). - Vaclav Kotesovec, Aug 19 2014

A246213 Number of endofunctions on [n] where the largest cycle length equals 3.

Original entry on oeis.org

2, 32, 500, 8600, 165690, 3568768, 85372280, 2251589600, 65007768650, 2041482333440, 69330316507452, 2533173484572640, 99124829660524850, 4137148176815360000, 183498069976613613680, 8620747043700633797888, 427712115490907106172050, 22350263436559575406220800
Offset: 3

Views

Author

Alois P. Heinz, Aug 19 2014

Keywords

Crossrefs

Column k=3 of A241981.

Programs

  • Maple
    with(combinat):
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add((i-1)!^j*multinomial(n, n-i*j, i$j)/j!*
          b(n-i*j, i-1), j=0..n/i)))
        end:
    A:= (n, k)-> add(binomial(n-1, j-1)*n^(n-j)*b(j, min(j, k)), j=0..n):
    a:= n-> A(n, 3) -A(n, 2):
    seq(a(n), n=3..25);
  • Mathematica
    multinomial[n_, k_List] := n!/Times @@ (k!);
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, Sum[(i - 1)!^j multinomial[n, Join[{n - i*j}, Table[i, {j}]]]/j! b[n - i*j, i - 1], {j, 0, n/i}]]];
    A[n_, k_] := Sum[Binomial[n-1, j-1] n^(n-j) b[j, Min[j, k]], {j, 0, n}];
    a[n_] := A[n, 3] - A[n, 2];
    a /@ Range[3, 25] (* Jean-François Alcover, Dec 28 2020, after Alois P. Heinz *)

Formula

a(n) ~ (3*exp(11/6)-2*exp(3/2)) * n^(n-1). - Vaclav Kotesovec, Aug 21 2014

A246214 Number of endofunctions on [n] where the largest cycle length equals 4.

Original entry on oeis.org

6, 150, 3240, 72030, 1719060, 44520840, 1252364400, 38167414560, 1255558958280, 44404434904830, 1681726757430720, 67953913291104750, 2919509551303952880, 132943540577100047760, 6397727538671302783680, 324511272091351156939200, 17306903935107005765263200
Offset: 4

Views

Author

Alois P. Heinz, Aug 19 2014

Keywords

Crossrefs

Column k=4 of A241981.

Programs

  • Maple
    with(combinat):
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add((i-1)!^j*multinomial(n, n-i*j, i$j)/j!*
          b(n-i*j, i-1), j=0..n/i)))
        end:
    A:= (n, k)-> add(binomial(n-1, j-1)*n^(n-j)*b(j, min(j, k)), j=0..n):
    a:= n-> A(n, 4) -A(n, 3):
    seq(a(n), n=4..25);
  • Mathematica
    multinomial[n_, k_List] := n!/Times @@ (k!);
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, Sum[(i - 1)!^j multinomial[n, Join[{n - i*j}, Table[i, {j}]]]/j! b[n - i*j, i - 1], {j, 0, n/i}]]];
    A[n_, k_] := Sum[Binomial[n-1, j-1] n^(n-j) b[j, Min[j, k]], {j, 0, n}];
    a[n_] := A[n, 4] - A[n, 3];
    a /@ Range[4, 25] (* Jean-François Alcover, Dec 28 2020, after Alois P. Heinz *)

Formula

a(n) ~ (4*exp(25/12) - 3*exp(11/6)) * n^(n-1). - Vaclav Kotesovec, Aug 21 2014

A246215 Number of endofunctions on [n] where the largest cycle length equals 5.

Original entry on oeis.org

24, 864, 24696, 688128, 19840464, 604727424, 19632956112, 680195957760, 25130679950376, 988325574652416, 41277744231187464, 1826323584590389248, 85391029667937905184, 4209030460729215184896, 218223423136426488339744, 11875233973816788160610304
Offset: 5

Views

Author

Alois P. Heinz, Aug 19 2014

Keywords

Crossrefs

Column k=5 of A241981.

Programs

  • Maple
    with(combinat):
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add((i-1)!^j*multinomial(n, n-i*j, i$j)/j!*
          b(n-i*j, i-1), j=0..n/i)))
        end:
    A:= (n, k)-> add(binomial(n-1, j-1)*n^(n-j)*b(j, min(j, k)), j=0..n):
    a:= n-> A(n, 5) -A(n, 4):
    seq(a(n), n=5..25);
  • Mathematica
    multinomial[n_, k_List] := n!/Times @@ (k!);
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, Sum[(i - 1)!^j multinomial[n, Join[{n - i*j}, Table[i, {j}]]]/j! b[n - i*j, i - 1], {j, 0, n/i}]]];
    A[n_, k_] := Sum[Binomial[n-1, j-1] n^(n-j) b[j, Min[j, k]], {j, 0, n}];
    a[n_] := A[n, 5] - A[n, 4];
    a /@ Range[5, 25] (* Jean-François Alcover, Dec 28 2020, after Alois P. Heinz *)

Formula

a(n) ~ (5*exp(137/60) - 4*exp(25/12)) * n^(n-1). - Vaclav Kotesovec, Aug 21 2014

A246216 Number of endofunctions on [n] where the largest cycle length equals 6.

Original entry on oeis.org

120, 5880, 215040, 7348320, 252000000, 8928667440, 331079253120, 12919902035040, 531665809234560, 23074929870993000, 1055390757120860160, 50802829404718896960, 2569731417499060039680, 136361684705644061566560, 7578327282420081922560000
Offset: 6

Views

Author

Alois P. Heinz, Aug 19 2014

Keywords

Crossrefs

Column k=6 of A241981.

Programs

  • Maple
    with(combinat):
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add((i-1)!^j*multinomial(n, n-i*j, i$j)/j!*
          b(n-i*j, i-1), j=0..n/i)))
        end:
    A:= (n, k)-> add(binomial(n-1, j-1)*n^(n-j)*b(j, min(j, k)), j=0..n):
    a:= n-> A(n, 6) -A(n, 5):
    seq(a(n), n=6..25);

Formula

a(n) ~ (6*exp(49/20) - 5*exp(137/60)) * n^(n-1). - Vaclav Kotesovec, Aug 21 2014

A246217 Number of endofunctions on [n] where the largest cycle length equals 7.

Original entry on oeis.org

720, 46080, 2099520, 86400000, 3478701600, 141893959680, 5963619055680, 260480095349760, 11874161338182000, 565994948205772800, 28225084763940704640, 1472185000741804277760, 80257688278285346487360, 4568639693232433397760000, 271256500003796168962953600
Offset: 7

Views

Author

Alois P. Heinz, Aug 19 2014

Keywords

Crossrefs

Column k=7 of A241981.

Programs

  • Maple
    with(combinat):
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add((i-1)!^j*multinomial(n, n-i*j, i$j)/j!*
          b(n-i*j, i-1), j=0..n/i)))
        end:
    A:= (n, k)-> add(binomial(n-1, j-1)*n^(n-j)*b(j, min(j, k)), j=0..n):
    a:= n-> A(n, 7) -A(n, 6):
    seq(a(n), n=7..25);

Formula

a(n) ~ (7*exp(363/140) - 6*exp(49/20)) * n^(n-1). - Vaclav Kotesovec, Aug 21 2014

A246218 Number of endofunctions on [n] where the largest cycle length equals 8.

Original entry on oeis.org

5040, 408240, 22680000, 1106859600, 51732172800, 2408384618640, 113960430904320, 5541379593750000, 278592031202284800, 14529619059476320800, 787422201081850414080, 44373594768472437642720, 2600326096882824360960000, 158404803877320370312773600
Offset: 8

Views

Author

Alois P. Heinz, Aug 19 2014

Keywords

Crossrefs

Column k=8 of A241981.

Programs

  • Maple
    with(combinat):
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add((i-1)!^j*multinomial(n, n-i*j, i$j)/j!*
          b(n-i*j, i-1), j=0..n/i)))
        end:
    A:= (n, k)-> add(binomial(n-1, j-1)*n^(n-j)*b(j, min(j, k)), j=0..n):
    a:= n-> A(n, 8) -A(n, 7):
    seq(a(n), n=8..25);

Formula

a(n) ~ (8*exp(761/280) - 7*exp(363/140)) * n^(n-1). - Vaclav Kotesovec, Aug 21 2014
Showing 1-10 of 12 results. Next