A246049
Number T(n,k) of endofunctions on [n] where the smallest cycle length equals k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 3, 1, 0, 19, 6, 2, 0, 175, 51, 24, 6, 0, 2101, 580, 300, 120, 24, 0, 31031, 8265, 4360, 2160, 720, 120, 0, 543607, 141246, 74130, 41160, 17640, 5040, 720, 0, 11012415, 2810437, 1456224, 861420, 430080, 161280, 40320, 5040
Offset: 0
Triangle T(n,k) begins:
1;
0, 1;
0, 3, 1;
0, 19, 6, 2;
0, 175, 51, 24, 6;
0, 2101, 580, 300, 120, 24;
0, 31031, 8265, 4360, 2160, 720, 120;
0, 543607, 141246, 74130, 41160, 17640, 5040, 720;
...
Columns k=0-10 give:
A000007,
A045531,
A246189,
A246190,
A246191,
A246192,
A246193,
A246194,
A246195,
A246196,
A246197.
Main diagonal gives
A000142(n-1) for n>0.
-
with(combinat):
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i>n, 0,
add((i-1)!^j*multinomial(n, n-i*j, i$j)/j!*
b(n-i*j, i+1), j=0..n/i)))
end:
A:= (n, k)-> add(binomial(n-1, j-1)*n^(n-j)*b(j, k), j=0..n):
T:= (n, k)-> `if`(k=0, `if`(n=0, 1, 0), A(n, k) -A(n, k+1)):
seq(seq(T(n, k), k=0..n), n=0..12);
-
multinomial[n_, k_List] := n!/Times @@ (k!);
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i>n, 0,
Sum[(i-1)!^j*multinomial[n, {n-i*j, Sequence @@ Table[i, {j}]}]/j!*
b[n-i*j, i+1], {j, 0, n/i}]]];
A[n_, k_] := Sum[Binomial[n-1, j-1]*n^(n-j)*b[j, k], {j, 0, n}];
T[n_, k_] := If[k == 0, If[n == 0, 1, 0], A[n, k] - A[n, k+1]];
Table[Table[T[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Jan 06 2015, after Alois P. Heinz *)
A243098
Number T(n,k) of endofunctions on [n] with all cycles of length k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 3, 1, 0, 16, 6, 2, 0, 125, 51, 24, 6, 0, 1296, 560, 300, 120, 24, 0, 16807, 7575, 4360, 2160, 720, 120, 0, 262144, 122052, 73710, 41160, 17640, 5040, 720, 0, 4782969, 2285353, 1430016, 861420, 430080, 161280, 40320, 5040
Offset: 0
Triangle T(n,k) begins:
1;
0, 1;
0, 3, 1;
0, 16, 6, 2;
0, 125, 51, 24, 6;
0, 1296, 560, 300, 120, 24;
0, 16807, 7575, 4360, 2160, 720, 120;
0, 262144, 122052, 73710, 41160, 17640, 5040, 720;
...
Main diagonal gives
A000142(n-1) for n>0.
-
with(combinat):
T:= (n, k)-> `if`(k*n=0, `if`(k+n=0, 1, 0),
add(binomial(n-1, j*k-1)*n^(n-j*k)*(k-1)!^j*
multinomial(j*k, k$j, 0)/j!, j=0..n/k)):
seq(seq(T(n, k), k=0..n), n=0..10);
-
multinomial[n_, k_] := n!/Times @@ (k!); T[n_, k_] := If[k*n==0, If[k+n == 0, 1, 0], Sum[Binomial[n-1, j*k-1]*n^(n-j*k)*(k-1)!^j*multinomial[j*k, Append[Array[k&, j], 0]]/j!, {j, 0, n/k}]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 19 2017, translated from Maple *)
A163951
The number of functions in a finite set for which the sequence of composition powers ends in a length 2 cycle.
Original entry on oeis.org
0, 0, 1, 9, 93, 1155, 17025, 292383, 5752131, 127790505, 3167896005, 86756071545, 2602658092419, 84917405260779, 2994675198208785, 113538315994418175, 4606094297461892895, 199122610252964803857, 9139190793845641425261, 443881600924216704982425
Offset: 0
Any transposition (or disjoint combination) is one element to be counted.
When n=2, there is only one, and a(2)=1. When n=3, there are only 3 transpositions, but there are other 6 elements, for instance
f:{1,2,3}->{2,1,1} gives fof:{1,2,3}->{1,2,2} and fofof=f (cycle 2),
(the others are similar), thus giving a(3)=9.
-
with(combinat):
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add((i-1)!^j*multinomial(n, n-i*j, i$j)/j!*
b(n-i*j, i-1), j=0..n/i)))
end:
A:= (n, k)-> add(binomial(n-1, j-1)*n^(n-j)*b(j, min(j, k)), j=0..n):
a:= n-> A(n, 2) -A(n, 1):
seq(a(n), n=0..25); # Alois P. Heinz, Aug 19 2014
-
multinomial[n_, k_List] := n!/Times @@ (k!);
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, Sum[(i - 1)!^j*multinomial[ n, Join[{n - i*j}, Table[i, j]]]/j!*b[n - i*j, i - 1], {j, 0, n/i}]]];
A[n_, k_] := Sum[Binomial[n-1, j-1]*n^(n-j)*b[j, Min[j, k]], {j, 0, n}];
a[0] = 0; a[n_] := A[n, 2] - A[n, 1];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jun 05 2018, after Alois P. Heinz *)
A241982
Number of endofunctions on [2n] where the largest cycle length equals n.
Original entry on oeis.org
1, 3, 93, 8600, 1719060, 604727424, 331079253120, 260480095349760, 278592031202284800, 388855261570122547200, 686533182382689959116800, 1495779844806108697677004800, 3942052104672989614027181260800, 12360865524060039746012601384960000
Offset: 0
a(1) = 3: (1,1), (1,2), (2,2).
-
with(combinat):
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add((i-1)!^j*multinomial(n, n-i*j, i$j)/j!*
b(n-i*j, i-1), j=0..n/i)))
end:
A:= (n, k)-> add(binomial(n-1, j-1)*n^(n-j)*b(j, min(j, k)), j=0..n):
a:= n-> `if`(n=0, 1, A(2*n, n) -A(2*n, n-1)):
seq(a(n), n=0..15);
-
multinomial[n_, k_List] := n!/Times @@ (k!);
b[n_, i_] := b[n, i] = Which[n==0, 1, i<1, 0, True, Sum[(i-1)!^j* multinomial[n, Join[{n-i*j}, Table[i, {j}]]]/j!*b[n-i*j, i-1], {j, 0, n/i} ] ];
A[n_, k_] := Sum[Binomial[n-1, j-1]*n^(n-j)*b[j, Min[j, k]], {j, 0, n}];
a[n_] := If[n == 0, 1, A[2n, n] - A[2n, n-1]];
Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Apr 01 2017, translated from Maple *)
A246213
Number of endofunctions on [n] where the largest cycle length equals 3.
Original entry on oeis.org
2, 32, 500, 8600, 165690, 3568768, 85372280, 2251589600, 65007768650, 2041482333440, 69330316507452, 2533173484572640, 99124829660524850, 4137148176815360000, 183498069976613613680, 8620747043700633797888, 427712115490907106172050, 22350263436559575406220800
Offset: 3
-
with(combinat):
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add((i-1)!^j*multinomial(n, n-i*j, i$j)/j!*
b(n-i*j, i-1), j=0..n/i)))
end:
A:= (n, k)-> add(binomial(n-1, j-1)*n^(n-j)*b(j, min(j, k)), j=0..n):
a:= n-> A(n, 3) -A(n, 2):
seq(a(n), n=3..25);
-
multinomial[n_, k_List] := n!/Times @@ (k!);
b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, Sum[(i - 1)!^j multinomial[n, Join[{n - i*j}, Table[i, {j}]]]/j! b[n - i*j, i - 1], {j, 0, n/i}]]];
A[n_, k_] := Sum[Binomial[n-1, j-1] n^(n-j) b[j, Min[j, k]], {j, 0, n}];
a[n_] := A[n, 3] - A[n, 2];
a /@ Range[3, 25] (* Jean-François Alcover, Dec 28 2020, after Alois P. Heinz *)
A246214
Number of endofunctions on [n] where the largest cycle length equals 4.
Original entry on oeis.org
6, 150, 3240, 72030, 1719060, 44520840, 1252364400, 38167414560, 1255558958280, 44404434904830, 1681726757430720, 67953913291104750, 2919509551303952880, 132943540577100047760, 6397727538671302783680, 324511272091351156939200, 17306903935107005765263200
Offset: 4
-
with(combinat):
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add((i-1)!^j*multinomial(n, n-i*j, i$j)/j!*
b(n-i*j, i-1), j=0..n/i)))
end:
A:= (n, k)-> add(binomial(n-1, j-1)*n^(n-j)*b(j, min(j, k)), j=0..n):
a:= n-> A(n, 4) -A(n, 3):
seq(a(n), n=4..25);
-
multinomial[n_, k_List] := n!/Times @@ (k!);
b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, Sum[(i - 1)!^j multinomial[n, Join[{n - i*j}, Table[i, {j}]]]/j! b[n - i*j, i - 1], {j, 0, n/i}]]];
A[n_, k_] := Sum[Binomial[n-1, j-1] n^(n-j) b[j, Min[j, k]], {j, 0, n}];
a[n_] := A[n, 4] - A[n, 3];
a /@ Range[4, 25] (* Jean-François Alcover, Dec 28 2020, after Alois P. Heinz *)
A246215
Number of endofunctions on [n] where the largest cycle length equals 5.
Original entry on oeis.org
24, 864, 24696, 688128, 19840464, 604727424, 19632956112, 680195957760, 25130679950376, 988325574652416, 41277744231187464, 1826323584590389248, 85391029667937905184, 4209030460729215184896, 218223423136426488339744, 11875233973816788160610304
Offset: 5
-
with(combinat):
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add((i-1)!^j*multinomial(n, n-i*j, i$j)/j!*
b(n-i*j, i-1), j=0..n/i)))
end:
A:= (n, k)-> add(binomial(n-1, j-1)*n^(n-j)*b(j, min(j, k)), j=0..n):
a:= n-> A(n, 5) -A(n, 4):
seq(a(n), n=5..25);
-
multinomial[n_, k_List] := n!/Times @@ (k!);
b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, Sum[(i - 1)!^j multinomial[n, Join[{n - i*j}, Table[i, {j}]]]/j! b[n - i*j, i - 1], {j, 0, n/i}]]];
A[n_, k_] := Sum[Binomial[n-1, j-1] n^(n-j) b[j, Min[j, k]], {j, 0, n}];
a[n_] := A[n, 5] - A[n, 4];
a /@ Range[5, 25] (* Jean-François Alcover, Dec 28 2020, after Alois P. Heinz *)
A246216
Number of endofunctions on [n] where the largest cycle length equals 6.
Original entry on oeis.org
120, 5880, 215040, 7348320, 252000000, 8928667440, 331079253120, 12919902035040, 531665809234560, 23074929870993000, 1055390757120860160, 50802829404718896960, 2569731417499060039680, 136361684705644061566560, 7578327282420081922560000
Offset: 6
-
with(combinat):
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add((i-1)!^j*multinomial(n, n-i*j, i$j)/j!*
b(n-i*j, i-1), j=0..n/i)))
end:
A:= (n, k)-> add(binomial(n-1, j-1)*n^(n-j)*b(j, min(j, k)), j=0..n):
a:= n-> A(n, 6) -A(n, 5):
seq(a(n), n=6..25);
A246217
Number of endofunctions on [n] where the largest cycle length equals 7.
Original entry on oeis.org
720, 46080, 2099520, 86400000, 3478701600, 141893959680, 5963619055680, 260480095349760, 11874161338182000, 565994948205772800, 28225084763940704640, 1472185000741804277760, 80257688278285346487360, 4568639693232433397760000, 271256500003796168962953600
Offset: 7
-
with(combinat):
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add((i-1)!^j*multinomial(n, n-i*j, i$j)/j!*
b(n-i*j, i-1), j=0..n/i)))
end:
A:= (n, k)-> add(binomial(n-1, j-1)*n^(n-j)*b(j, min(j, k)), j=0..n):
a:= n-> A(n, 7) -A(n, 6):
seq(a(n), n=7..25);
A246218
Number of endofunctions on [n] where the largest cycle length equals 8.
Original entry on oeis.org
5040, 408240, 22680000, 1106859600, 51732172800, 2408384618640, 113960430904320, 5541379593750000, 278592031202284800, 14529619059476320800, 787422201081850414080, 44373594768472437642720, 2600326096882824360960000, 158404803877320370312773600
Offset: 8
-
with(combinat):
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add((i-1)!^j*multinomial(n, n-i*j, i$j)/j!*
b(n-i*j, i-1), j=0..n/i)))
end:
A:= (n, k)-> add(binomial(n-1, j-1)*n^(n-j)*b(j, min(j, k)), j=0..n):
a:= n-> A(n, 8) -A(n, 7):
seq(a(n), n=8..25);
Showing 1-10 of 12 results.
Comments