A246117 Number of parity preserving permutations of the set {1,2,...,n} with exactly k cycles.
1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 2, 5, 4, 1, 0, 4, 12, 13, 6, 1, 0, 12, 40, 51, 31, 9, 1, 0, 36, 132, 193, 144, 58, 12, 1, 0, 144, 564, 904, 769, 376, 106, 16, 1, 0, 576, 2400, 4180, 3980, 2273, 800, 170, 20, 1, 0, 2880, 12576, 23300, 24080, 15345, 6273, 1650, 270, 25, 1
Offset: 1
Examples
Triangle begins n\k| 1 2 3 4 5 6 7 8 = = = = = = = = = = = = = = = = = = = 1 | 1 2 | 0 1 3 | 0 1 1 4 | 0 1 2 1 5 | 0 2 5 4 1 6 | 0 4 12 13 6 1 7 | 0 12 40 51 31 9 1 8 | 0 36 132 193 144 58 12 1 ... n = 5: The 12 parity-preserving permutations of S_5 and their cycle structure are shown in the table below. = = = = = = = = = = = = = = = = = = = = = = = = = = Parity-preserving Cycle structure # cycles permutation = = = = = = = = = = = = = = = = = = = = = = = = = = 54123 (153)(24) 2 34521 (135)(24) 2 34125 (13)(24)(5) 3 14523 (1)(24)(35) 3 32541 (135)(2)(4) 3 52143 (153)(2)(4) 3 54321 (15)(24)(3) 3 32145 (13)(2)(4)(5) 4 14325 (1)(24)(3)(5) 4 12543 (1)(2)(35)(4) 4 52341 (15)(2)(3)(4) 4 12345 (1)(2)(3)(4)(5) 5 = = = = = = = = = = = = = = = = = = = = = = = = = = This gives row 5 as [2, 5, 4, 1] with generating function 2*x^2 + 5*x^3 + 4*x^4 + x^5 = ( x*(x + 1) )^2 * (x + 2).
Links
- Y. Cai and M. Readdy, Negative q-Stirling numbers, arXiv:1506.03249 [math.CO], 2015.
- A. Dzhumadil'daev and D. Yeliussizov, Walks, partitions, and normal ordering, Electronic Journal of Combinatorics, 22(4) (2015), #P4.10.
- E. Neuwirth, Recursively defined combinatorial functions: Extending Galton's board, Discrete Math. 239 (2001) 33-51.
- Shinji Tanimoto, Alternate Permutations and Signed Eulerian Numbers, arXiv:math/0612135 [math.CO], 2006; Ann. Comb. 14 (2010), 355.
Crossrefs
Programs
-
Maple
A246117 := proc(n,k) if n = k then 1; elif k <= 1 or k > n then 0; else floor((n-1)/2)*procname(n-1,k)+procname(n-1,k-1) ; end if; end proc: seq(seq(A246117(n,k),k=1..n),n=1..8) ; # R. J. Mathar, Oct 01 2016
-
Mathematica
Flatten[{1,Rest[Table[Table[(-1)^(n-k) * Sum[StirlingS1[Floor[(n+1)/2],j] * StirlingS1[Floor[n/2],k-j],{j,1,k-1}],{k,1,n}],{n,1,12}]]}] (* Vaclav Kotesovec, Feb 09 2015 *)
Formula
Recurrence equations: T(1,1) = 1, T(n,1) = 0 for n >= 2; T(n,k) = 0 for k > n; otherwise T(n+1,k) = floor(n/2)*T(n,k) + T(n,k-1).
Row generating polynomials R(n,x): R(2*n,x) = ( x*(x + 1)*...*(x + n - 1) )^2; R(2*n + 1,x) = R(2*n,x)*(x + n) with the convention R(0,x) = 1.
T(n,k) = (-1)^(n-k) * Sum_{j=1..k-1} Stirling1(floor((n+1)/2),j) * Stirling1(floor(n/2),k-j), for k>1. - Vaclav Kotesovec, Feb 09 2015
Comments