A246119 a(n) is the least k such that k^(2^n)*(k^(2^n) - 1) + 1 is prime.
2, 2, 2, 5, 4, 2, 5, 196, 14, 129, 424, 484, 22, 5164, 7726, 13325, 96873, 192098, 712012, 123447
Offset: 0
Links
- C. Caldwell, Generalized unique primes
- C. Caldwell, The Prime Pages, Phi_3(-465859^1048576)
Programs
-
Mathematica
Table[SelectFirst[Range@ 200, PrimeQ[#^(2^n) (#^(2^n) - 1) + 1] &], {n, 0, 9}] (* Michael De Vlieger, Jan 15 2018 *)
-
PARI
a(n)=k=1;while(!ispseudoprime(k^(2^n)*(k^(2^n)-1)+1),k++);k n=0;while(n<100,print1(a(n),", ");n++) \\ Derek Orr, Aug 14 2014
Formula
a(n) = A085398(3*2^(n+1)). - Jinyuan Wang, Jan 01 2023
Extensions
a(16) from Serge Batalov, Dec 30 2014
a(17) from Serge Batalov, Feb 10 2015
a(18-19) from Serge Batalov, May 31 2023
Comments