A246342 a(0) = 12, after which, if a(n-1) = product_{k >= 1} (p_k)^(c_k), then a(n) = (1/2) * (1 + product_{k >= 1} (p_{k+1})^(c_k)), where p_k indicates the k-th prime, A000040(k).
12, 23, 15, 18, 38, 35, 39, 43, 24, 68, 86, 71, 37, 21, 28, 50, 74, 62, 56, 149, 76, 104, 230, 305, 235, 186, 278, 224, 1337, 1062, 2288, 8951, 4482, 16688, 67271, 33637, 16821, 66688, 571901, 338059, 181516, 258260, 455900, 1180337, 1080207, 1817863, 1157487, 984558, 1230848, 53764115
Offset: 0
Keywords
Examples
Start with a(0) = 12; thereafter each new term is obtained by replacing each prime factor of the previous term with the next prime, to whose product 1 is added before it is halved: 12 = 2^2 * 3 = p_1^2 * p_2 -> ((p_2^2 * p_3)+1)/2 = ((9*5)+1)/2 = 23, thus a(1) = 23. 23 = p_9 -> (p_10 + 1)/2 = (29+1)/2 = 15, thus a(2) = 15.
Links
- Antti Karttunen, Table of n, a(n) for n = 0..1001
Crossrefs
Programs
-
PARI
default(primelimit, 2^30); A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ Using code of Michel Marcus A048673(n) = (A003961(n)+1)/2; k = 12; for(n=0, 1001, write("b246342.txt", n, " ", k) ; k = A048673(k)); (Scheme, with memoization-macro definec) (definec (A246342 n) (if (zero? n) 12 (A048673 (A246342 (- n 1)))))
Formula
a(0) = 12, and for n >= 1, a(n) = A048673(a(n-1)).
Comments