A246344 a(0) = 16, after which, if a(n-1) = product_{k >= 1} (p_k)^(c_k), then a(n) = (1/2) * (1 + product_{k >= 1} (p_{k+1})^(c_k)), where p_k indicates the k-th prime, A000040(k).
16, 41, 22, 20, 32, 122, 101, 52, 77, 72, 338, 434, 611, 451, 280, 1040, 4820, 7907, 3960, 30713, 15364, 22577, 12154, 9791, 4902, 8108, 9131, 5815, 4099, 2056, 3551, 2095, 1474, 1385, 984, 2903, 1455, 1768, 4361, 5869, 2940, 19058, 18845, 13227, 11053, 8707, 4357, 2182, 1640, 4064, 15917, 9432, 46238
Offset: 0
Keywords
Examples
Start with a(0) = 16; then after each new term is obtained by replacing each prime factor of the previous term with the next prime, to whose product is added one before it is halved: 16 = 2^4 = p_1^4 -> ((p_2^4)+1)/2 = (3^4 + 1)/2 = (81+1)/2 = 41, thus a(1) = 41. 41 = p_13 -> ((p_14)+1)/2 = (43+1)/2 = 22, thus a(2) = 22.
Links
- Antti Karttunen, Table of n, a(n) for n = 0..1001
Crossrefs
Programs
-
PARI
default(primelimit, 2^30); A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i,1] = nextprime(f[i,1]+1)); factorback(f); \\ Using code of Michel Marcus A048673(n) = (A003961(n)+1)/2; k = 16; for(n=0, 1001, write("b246344.txt", n, " ", k) ; k = A048673(k)); (Scheme, with memoization-macro definec) (definec (A246344 n) (if (zero? n) 16 (A048673 (A246344 (- n 1)))))
Formula
a(0) = 16, and for n >= 1, a(n) = A048673(a(n-1)).
Comments