cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246344 a(0) = 16, after which, if a(n-1) = product_{k >= 1} (p_k)^(c_k), then a(n) = (1/2) * (1 + product_{k >= 1} (p_{k+1})^(c_k)), where p_k indicates the k-th prime, A000040(k).

Original entry on oeis.org

16, 41, 22, 20, 32, 122, 101, 52, 77, 72, 338, 434, 611, 451, 280, 1040, 4820, 7907, 3960, 30713, 15364, 22577, 12154, 9791, 4902, 8108, 9131, 5815, 4099, 2056, 3551, 2095, 1474, 1385, 984, 2903, 1455, 1768, 4361, 5869, 2940, 19058, 18845, 13227, 11053, 8707, 4357, 2182, 1640, 4064, 15917, 9432, 46238
Offset: 0

Views

Author

Antti Karttunen, Aug 24 2014

Keywords

Comments

Iterates of A048673 starting from value 16.
Either this sequence is actually part of the cycle containing 12 (see A246342) or 16 is the smallest member of this cycle (regardless of whether this cycle is finite or infinite), which follows because all numbers 1 .. 11 are in finite cycles, and also 13 and 14 are in closed cycles and 15 is in the cycle of 12.

Examples

			Start with a(0) = 16; then after each new term is obtained by replacing each prime factor of the previous term with the next prime, to whose product is added one before it is halved:
16 = 2^4 = p_1^4 -> ((p_2^4)+1)/2 = (3^4 + 1)/2 = (81+1)/2 = 41, thus a(1) = 41.
41 = p_13 -> ((p_14)+1)/2 = (43+1)/2 = 22, thus a(2) = 22.
		

Crossrefs

A246345 gives the terms of the same cycle when going to the opposite direction from 16.

Programs

  • PARI
    default(primelimit, 2^30);
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i,1] = nextprime(f[i,1]+1)); factorback(f); \\ Using code of Michel Marcus
    A048673(n) = (A003961(n)+1)/2;
    k = 16; for(n=0, 1001, write("b246344.txt", n, " ", k) ; k = A048673(k));
    (Scheme, with memoization-macro definec)
    (definec (A246344 n) (if (zero? n) 16 (A048673 (A246344 (- n 1)))))

Formula

a(0) = 16, and for n >= 1, a(n) = A048673(a(n-1)).