A246360 a(1) = 1, then A007051 ((3^n)+1)/2 interleaved with A057198 (5*3^(n-1)+1)/2.
1, 2, 3, 5, 8, 14, 23, 41, 68, 122, 203, 365, 608, 1094, 1823, 3281, 5468, 9842, 16403, 29525, 49208, 88574, 147623, 265721, 442868, 797162, 1328603, 2391485, 3985808, 7174454, 11957423, 21523361, 35872268, 64570082, 107616803, 193710245, 322850408, 581130734
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..64
- Index entries for linear recurrences with constant coefficients, signature (1,3,-3).
Crossrefs
Programs
-
Mathematica
LinearRecurrence[{1, 3, -3}, {1, 2, 3, 5}, 40] (* Hugo Pfoertner, Sep 27 2022 *)
-
Scheme
(define (A246360 n) (cond ((<= n 1) n) ((even? n) (/ (+ 1 (A000244 (/ n 2))) 2)) (else (/ (+ 1 (* 5 (A000244 (/ (- n 3) 2)))) 2))))
Formula
a(1) = 1, a(2n) = (3^n+1)/2, a(2n+1) = (5 * 3^(n-1)+1)/2.
a(n) = A087503(n-3) + 2 for n >= 3. - Peter Kagey, Nov 30 2019
G.f.: x -x^2*(-2-x+4*x^2) / ( (x-1)*(3*x^2-1) ). - R. J. Mathar, Sep 23 2014
Comments