A246371 Numbers n such that, if 2n-1 = Product_{k >= 1} (p_k)^(c_k) then n > Product_{k >= 1} (p_{k-1})^(c_k), where p_k indicates the k-th prime, A000040(k).
5, 8, 11, 13, 14, 17, 18, 23, 28, 32, 38, 39, 41, 43, 50, 53, 58, 59, 61, 63, 68, 73, 74, 77, 83, 86, 88, 94, 95, 98, 104, 113, 116, 122, 123, 128, 131, 137, 138, 140, 143, 149, 158, 163, 167, 172, 173, 176, 179, 182, 185, 188, 193, 194, 200, 203, 212, 213, 215, 218, 221, 228, 230, 233, 238, 239, 242, 248, 254, 257
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
- Matthijs Coster, Oplossing Zomerprijsvraag, Pythagoras 54/2 (2014) 4-7.
Crossrefs
Programs
-
PARI
default(primelimit, 2^30); A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)}; A064216(n) = A064989((2*n)-1); isA246371(n) = (A064216(n) < n); n = 0; i = 0; while(i < 10000, n++; if(isA246371(n), i++; write("b246371.txt", i, " ", n))); (Scheme, with Antti Karttunen's IntSeq-library) (define A246371 (MATCHING-POS 1 1 (lambda (n) (< (A064216 n) n))))
Comments