cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A246377 Permutation of natural numbers: a(1) = 1, a(p_n) = 2*a(n)+1, a(c_n) = 2*a(n), where p_n = n-th prime = A000040(n), c_n = n-th composite number = A002808(n).

Original entry on oeis.org

1, 3, 7, 2, 15, 6, 5, 14, 4, 30, 31, 12, 13, 10, 28, 8, 11, 60, 29, 62, 24, 26, 9, 20, 56, 16, 22, 120, 61, 58, 63, 124, 48, 52, 18, 40, 25, 112, 32, 44, 27, 240, 21, 122, 116, 126, 57, 248, 96, 104, 36, 80, 17, 50, 224, 64, 88, 54, 23, 480, 121, 42, 244, 232, 252, 114, 59, 496, 192, 208, 125, 72, 49, 160, 34, 100
Offset: 1

Views

Author

Antti Karttunen, Aug 27 2014

Keywords

Comments

This permutation is otherwise like Katarzyna Matylla's A135141, except that the role of even and odd numbers (or alternatively: primes and composites) has been swapped.
Because 2 is the only even prime, it implies that, apart from a(2)=3, odd numbers occur in odd positions only (along with many even numbers that also occur in odd positions).
This also implies that for each odd composite (A071904) there exists a separate infinite cycle in this permutation, apart from 9 and 15 which are in the same infinite cycle: (..., 23, 9, 4, 2, 3, 7, 5, 15, 28, 120, 82, 46, ...).

Crossrefs

Inverse: A246378.
Other related or similar permutations: A135141, A054429, A246201, A245703, A246376, A246379, A243071, A246681, A236854.
Differs from A237427 for the first time at n=19, where a(19) = 29, while A237427(19) = 62.

Formula

a(1) = 1, and for n > 1, if A010051(n) = 1 [i.e. when n is a prime], a(n) = 1+(2*a(A000720(n))), otherwise a(n) = 2*a(A065855(n)).
As a composition of related permutations:
a(n) = A054429(A135141(n)).
a(n) = A135141(A236854(n)).
a(n) = A246376(A246379(n)).
a(n) = A246201(A245703(n)).
a(n) = A243071(A246681(n)). [For n >= 1].
Other identities.
For all n > 1 the following holds:
A000035(a(n)) = A010051(n). [Maps primes to odd numbers > 1, and composites to even numbers, in some order. Permutations A246379 & A246681 have the same property].

A246375 Permutation of natural numbers: a(1) = 1, a(2n) = 2*a(n), a(2n+1) = A003961(1+a(n)). [Where A003961(n) shifts the prime factorization of n one step towards larger primes].

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 9, 8, 7, 10, 15, 12, 11, 18, 21, 16, 25, 14, 27, 20, 13, 30, 81, 24, 17, 22, 45, 36, 23, 42, 39, 32, 19, 50, 51, 28, 35, 54, 99, 40, 55, 26, 33, 60, 37, 162, 129, 48, 49, 34, 75, 44, 29, 90, 87, 72, 41, 46, 135, 84, 47, 78, 189, 64, 65, 38, 63, 100, 95, 102, 153, 56, 31, 70
Offset: 1

Views

Author

Antti Karttunen, Aug 27 2014

Keywords

Comments

This can be viewed as yet another "entanglement permutation" where the two complementary pairs to be interwoven together are even and odd numbers (A005843/A005408) which are entangled with the complementary pair even numbers (taken straight) and odd numbers in the order they appear in A003961: (A005843/A003961). Sequence A163511 has almost the same definition, but its domain starts from 0, which results a different permutation.

Crossrefs

Inverse: A246376.
Similar or related permutations: A005940, A005941, A163511, A245606, A246378, A246379.

Programs

  • PARI
    default(primelimit, (2^31)+(2^30));
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ Using code of Michel Marcus
    A246375(n) = if(1==n, 1, if(!(n%2), 2*A246375(n/2), A003961(1+A246375((n-1)/2))));
    for(n=1, 16384, write("b246375.txt", n, " ", A246375(n)));
    (Scheme, with memoizing definec-macro)
    (definec (A246375 n) (cond ((<= n 1) n) ((even? n) (* 2 (A246375 (/ n 2)))) (else (A003961 (+ 1 (A246375 (/ (- n 1) 2)))))))

Formula

a(1) = 1, a(2n) = 2*a(n), a(2n+1) = A003961(1+a(n)). [Where A003961(n) shifts the prime factorization of n one step towards larger primes].
As a composition of related permutations:
a(n) = A246379(A246378(n)).
Other identities. For all n >= 1 the following holds:
A000035(a(n)) = A000035(n). [Like A005940 & A005941, this also preserves the parity].

A246681 Permutation of natural numbers: a(0) = 1, a(1) = 2, a(p_n) = A003961(a(n)), a(c_n) = 2*a(n), where p_n = n-th prime = A000040(n), c_n = n-th composite number = A002808(n), and A003961(n) shifts the prime factorization of n one step towards larger primes.

Original entry on oeis.org

1, 2, 3, 5, 4, 7, 6, 9, 10, 8, 14, 11, 12, 15, 18, 20, 16, 25, 28, 21, 22, 24, 30, 27, 36, 40, 32, 50, 56, 33, 42, 13, 44, 48, 60, 54, 72, 45, 80, 64, 100, 35, 112, 75, 66, 84, 26, 63, 88, 96, 120, 108, 144, 81, 90, 160, 128, 200, 70, 49, 224, 99, 150, 132, 168, 52, 126, 55, 176, 192, 240, 39
Offset: 0

Views

Author

Antti Karttunen, Sep 01 2014

Keywords

Comments

Note the indexing: the domain starts from 0, while the range excludes zero.
Iterating a(n) from n=0 gives the sequence: 1, 2, 3, 5, 7, 9, 8, 10, 14, 18, 28, 56, 128, 156, 1344, 16524, 2706412500, ..., which is the only one-way cycle of this permutation.
Because 2 is the only even prime, it implies that, apart from a(0)=1 and a(2)=3, odd numbers occur in odd positions only (along with many even numbers that also occur in odd positions). This in turn implies that there exists an infinite number of infinite cycles like (... 648391 31 13 15 20 22 30 42 112 196 1350 ...) which contain just one odd composite (A071904). Apart from 9 which is in that one-way cycle, each odd composite occurs in a separate infinite two-way cycle, like 15 in the example above.

Crossrefs

Inverse: A246682.
Similar or related permutations: A163511, A246377, A246379, A246367, A245821.

Formula

a(0) = 1, a(1) = 2, and for n > 1, if A010051(n) = 1 [i.e. when n is a prime], a(n) = A003961(a(A000720(n))), otherwise a(n) = 2*a(A065855(n)).
Other identities.
For all n >= 0, the following holds:
a(A007097(n)) = A000040(n+1). [Maps the iterates of primes to primes].
A078442(a(n)) > 0 if and only if n is in A007097. [Follows from above].
For all n >= 1, the following holds:
a(n) = A163511(A246377(n)).
A000035(a(n)) = A010051(n). [Maps primes to odd numbers > 1, and composites to even numbers, in some order. Permutations A246377 & A246379 have the same property].
A055396(a(n)) = A049076(n). [An "order of primeness" is mapped to the index of the smallest prime dividing n].

A246380 Permutation of natural numbers: a(1) = 1, a(2n) = nthcomposite(a(n)), a(2n-1) = nthprime(a(A064989(2n-1)-1)), where nthprime = A000040, nthcomposite = A002808, and A064989(n) shifts the prime factorization of n one step towards smaller primes.

Original entry on oeis.org

1, 4, 2, 9, 7, 6, 23, 16, 3, 14, 13, 12, 43, 35, 17, 26, 37, 8, 101, 24, 5, 22, 19, 21, 53, 62, 83, 51, 79, 27, 233, 39, 191, 54, 149, 15, 103, 134, 11, 36, 47, 10, 151, 34, 41, 30, 29, 33, 73, 75, 241, 86, 113, 114, 89, 72, 1153, 108, 443, 40, 593, 296, 547, 56, 167, 245, 173, 76, 563, 194, 1553, 25
Offset: 1

Views

Author

Antti Karttunen, Aug 29 2014

Keywords

Comments

Has an infinite number of infinite cycles. See comments in A246379.

Crossrefs

Inverse: A246379.
Similar or related permutations: A246376, A246378, A246363, A246364, A246366, A246368, A064216, A246682.

Programs

  • PARI
    default(primelimit,(2^31)+(2^30));
    A002808(n) = { my(k=-1); while( -n + n += -k + k=primepi(n), ); n }; \\ This function from M. F. Hasler
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A246380(n) = if(1==n, 1, if(!(n%2), A002808(A246380(n/2)), prime(A246380(A064989(n)-1))));
    for(n=1, 3098, write("b246380.txt", n, " ", A246380(n)));
    (Scheme, with memoization-macro definec)
    (definec (A246380 n) (cond ((< n 2) n) ((even? n) (A002808 (A246380 (/ n 2)))) (else (A000040 (A246380 (- (A064989 n) 1))))))

Formula

a(1) = 1, a(2n) = nthcomposite(a(n)), a(2n-1) = nthprime(a(A064989(2n-1)-1)), where nthprime = A000040, nthcomposite = A002808, and A064989(n) shifts the prime factorization of n one step towards smaller primes.
As a composition of related permutations:
a(n) = A246378(A246376(n)).
Other identities. For all n > 1 the following holds:
A010051(a(n)) = A000035(n). [Maps odd numbers larger than one to primes, and even numbers to composites, in some order. Permutations A246378 & A246682 have the same property].
Showing 1-4 of 4 results.