cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246390 Nonnegative integers k satisfying sin(k) <= 0 and sin(k+1) <= 0.

Original entry on oeis.org

4, 5, 10, 11, 16, 17, 22, 23, 24, 29, 30, 35, 36, 41, 42, 48, 49, 54, 55, 60, 61, 66, 67, 68, 73, 74, 79, 80, 85, 86, 92, 93, 98, 99, 104, 105, 110, 111, 112, 117, 118, 123, 124, 129, 130, 136, 137, 142, 143, 148, 149, 154, 155, 156, 161, 162, 167, 168, 173
Offset: 0

Views

Author

Clark Kimberling, Aug 24 2014

Keywords

Comments

A246388 and A038130 (Beatty sequence for 2*Pi) partition A022844 (Beatty sequence for Pi). Likewise, A054386, the complement of A022844, is partitioned by A246389 and A246390. (See the Mathematica program.)

Crossrefs

Programs

  • Mathematica
    z = 400; f[x_] := Sin[x]
    Select[Range[0, z], f[#]*f[# + 1] <= 0 &] (* A022844 *)
    Select[Range[0, z], f[#] >= 0 && f[# + 1] <= 0 &]  (* A246388 *)
    Select[Range[0, z], f[#] <= 0 && f[# + 1] >= 0 &] (* A038130 *)
    Select[Range[0, z], f[#]*f[# + 1] > 0 &] (* A054386 *)
    Select[Range[0, z], f[#] >= 0 && f[# + 1] >= 0 &]  (* A246389 *)
    Select[Range[0, z], f[#] <= 0 && f[# + 1] <= 0 &] (* A246390 *)
    SequencePosition[Table[If[Sin[n]<=0,1,0],{n,200}],{1,1}][[;;,1]] (* Harvey P. Dale, Apr 02 2023 *)