A246467 G.f.: 1 / AGM(1-5*x, sqrt((1-x)*(1-25*x))).
1, 9, 121, 2025, 38025, 762129, 15912121, 341621289, 7484845225, 166549691025, 3751508008161, 85341068948529, 1957289174870121, 45199191579030225, 1049893021288265625, 24510327614556266025, 574726636455361317225, 13528549573868347823025, 319541915502909478890625
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + 9*x + 121*x^2 + 2025*x^3 + 38025*x^4 + 762129*x^5 +... where the square-root of the terms yields A026375: [1, 3, 11, 45, 195, 873, 3989, 18483, 86515, 408105, ...] the g.f. of which is 1/sqrt((1-x)*(1-5*x)).
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..717
Programs
-
Mathematica
CoefficientList[Series[1/ArithmeticGeometricMean[1-5x,Sqrt[(1-x)(1-25x)]],{x,0,20}],x] (* Harvey P. Dale, Nov 01 2023 *)
-
PARI
{a(n)=polcoeff( 1 / agm(1-5*x, sqrt((1-x)*(1-25*x) +x*O(x^n))), n)} for(n=0, 20, print1(a(n), ", "))
-
PARI
{a(n)=sum(k=0,n,binomial(n,k)*binomial(2*k,k))^2} for(n=0, 20, print1(a(n), ", "))
Formula
a(n) = A026375(n)^2 = [Sum_{k=0..n} binomial(n,k)*binomial(2*k,k)]^2.
G.f.: 1 / AGM((1-x)*(1+5*x), (1+x)*(1-5*x)) = Sum_{n>=0} a(n)*x^(2*n).
a(n) ~ 5^(2*n+1) / (4*Pi*n). - Vaclav Kotesovec, Dec 10 2018
Comments