cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246487 Numbers x such that sigma(x) + sigma(R(x)) = sigma(x + R(x)), where R(x) is the digit reversal of x and sigma(x) is the sum of the divisors of x.

Original entry on oeis.org

78, 87, 104, 401, 1144, 2072, 2178, 2702, 4411, 7038, 7348, 7878, 8307, 8437, 8712, 8787, 11144, 11544, 12584, 15834, 20710, 20913, 21476, 21978, 22164, 26070, 31902, 43851, 44111, 44511, 46122, 48521, 66649, 67412, 87912, 94666, 102786, 122584, 122784, 126984
Offset: 1

Views

Author

Paolo P. Lava, Aug 27 2014

Keywords

Examples

			x = 15834 -> R(x) = 43851 and sigma(15834) + sigma(43851) = 40320 + 59904 = 100224 = sigma(15834 + 43851)= sigma(59685).
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,b,k,n;
    for n from 1 to q do a:=n; b:=0;
    for k from 1 to ilog10(n)+1 do b:=10*b+(a mod 10); a:=trunc(a/10);
    od; if sigma(n)+sigma(b)=sigma(n+b) then print(n); fi;
    od; end: P(10^6);
  • Mathematica
    Select[Range[130000],DivisorSigma[1,#]+DivisorSigma[1,IntegerReverse[#]] == DivisorSigma[1,#+IntegerReverse[#]]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jul 27 2017 *)
  • PARI
    isok(n) = rn = subst(Polrev(digits(n)), x, 10); sigma(n + rn) == sigma(n) + sigma(rn); \\ Michel Marcus, Aug 29 2014