A027763 Smallest k such that 2^^n is not congruent to 2^^(n-1) mod k, where 2^^n denotes the power tower 2^2^...^2 (in which 2 appears n times).
2, 3, 5, 11, 23, 47, 283, 719, 1439, 2879, 34549, 138197, 531441, 1594323, 4782969, 14348907, 43046721, 86093443, 344373773, 688747547, 3486784401
Offset: 1
Examples
2^^2=2^2=4 and 2^^3=2^2^2=16. We find 4 = 16 (mod k) until k=5. So a(3)=5. - _T. D. Noe_, Mar 13 2009
References
- David Bressoud and Stan Wagon, A Course in Computational Number Theory, Key College Pub., 2000, p. 96.
- Stan Wagon, posting to Problem of the Week mailing list, Dec 15 1997.
Links
- D. Bressoud, CNT.m Computational Number Theory Mathematica package.
- Stan Wagon, Putnam Problem Notes
- Eric W. Weisstein, MathWorld: Power Tower
Programs
-
Mathematica
Needs["CNT`"]; k=1; Table[While[TowerMod[2,n,k]==TowerMod[2,n-1,k], k++ ]; k, {n,10}] (* T. D. Noe, Mar 13 2009 *)
Extensions
Improved the name and changed the offset because I just prepended a term. - T. D. Noe, Mar 13 2009
Corrected and extended by T. D. Noe, Mar 13 2009
Terms a(15)-a(19) from Wayne VanWeerthuizen, Aug 26 2014
Terms a(20)-a(21) from Wayne VanWeerthuizen, Sep 06 2014
Comments