A246499 Decimal expansion of zeta(2)/exp(gamma), gamma being the Euler-Mascheroni constant.
9, 2, 3, 5, 6, 3, 8, 3, 1, 6, 7, 4, 1, 8, 1, 3, 8, 2, 3, 2, 3, 5, 0, 9, 9, 5, 3, 9, 8, 7, 7, 0, 3, 9, 1, 6, 8, 4, 6, 9, 3, 1, 9, 6, 3, 2, 6, 1, 1, 1, 6, 3, 2, 5, 2, 0, 3, 5, 9, 5, 8, 3, 1, 6, 0, 2, 9, 7, 2, 3, 4, 3, 0, 5, 8, 2, 6, 0, 4, 8, 0, 9, 0, 9, 1, 2, 4, 9, 7, 7, 5, 0, 5, 2, 6, 5, 6, 2, 9, 8, 7, 9, 1, 5, 2
Offset: 0
Examples
0.9235638316741813823235099539877039168469319632611163252035958316...
Links
- Stanislav Sykora, Table of n, a(n) for n = 0..2000
- Eric Weisstein's World of Mathematics, Mertens Theorem, Equations 5-9
Programs
-
Magma
R:=RealField(100); Pi(R)^2/(6*Exp(EulerGamma(R))); // G. C. Greubel, Aug 30 2018
-
Mathematica
RealDigits[Zeta[2]/E^EulerGamma, 10, 100][[1]] (* Alonso del Arte, Nov 14 2014 *)
-
PARI
Pi^2/6/exp(Euler)
Formula
Equals Pi^2/(6*exp(gamma)).
Equals lim_{m->infinity} log(prime(m))*Product_{k=1..m} 1/(1 + 1/prime(k)).
Comments