A246522 Number A(n,k) of endofunctions on [n] whose cycle lengths are divisors of k; square array A(n,k), n>=0, k>=0, read by antidiagonals.
1, 1, 0, 1, 1, 0, 1, 1, 3, 0, 1, 1, 4, 16, 0, 1, 1, 3, 25, 125, 0, 1, 1, 4, 18, 218, 1296, 0, 1, 1, 3, 25, 157, 2451, 16807, 0, 1, 1, 4, 16, 224, 1776, 33832, 262144, 0, 1, 1, 3, 27, 125, 2601, 24687, 554527, 4782969, 0, 1, 1, 4, 16, 250, 1320, 37072, 407464, 10535100, 100000000, 0
Offset: 0
Examples
Square array A(n,k) begins: 1, 1, 1, 1, 1, 1, 1, ... 0, 1, 1, 1, 1, 1, 1, ... 0, 3, 4, 3, 4, 3, 4, ... 0, 16, 25, 18, 25, 16, 27, ... 0, 125, 218, 157, 224, 125, 250, ... 0, 1296, 2451, 1776, 2601, 1320, 2951, ... 0, 16807, 33832, 24687, 37072, 17671, 42552, ...
Links
- Alois P. Heinz, Antidiagonals n = 0..140, flattened
Crossrefs
Programs
-
Maple
with(numtheory): egf:= k-> exp(add((-LambertW(-x))^d/d, d=divisors(k))): A:= (n, k)-> n!*coeff(series(egf(k), x, n+1), x, n): seq(seq(A(n, d-n), n=0..d), d=0..12); # second Maple program: with(combinat): b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(multinomial(n, n-i*j, i$j)/j!*b(n-i*j, i-1, k)* (i-1)!^j, j=0..`if`(irem(k, i)=0, n/i, 0)))) end: A:=(n, k)->add(b(j, min(k, j), k)*n^(n-j)*binomial(n-1, j-1), j=0..n): seq(seq(A(n, d-n), n=0..d), d=0..12);
-
Mathematica
egf[k_] := Exp[Sum[(-ProductLog[-x])^d/d, {d, Divisors[k]}]]; A[1, 0] = 0; A[0, ] = 1; A[1, ] = 1; A[_, 0] = 0; A[n_, k_] := n!*SeriesCoefficient[egf[k], {x, 0, n}]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Dec 04 2014, translated from first Maple program *) multinomial[n_, k_List] := n!/Times @@ (k!); Unprotect[Power]; 0^0 = 1; Protect[Power]; b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[multinomial[n, Join[{n - i*j}, Table[i, {j}]]]/j!*b[n - i*j, i-1, k]*(i-1)!^j, {j, 0, If[Mod[k, i] == 0, n/i, 0]}]]]; A[n_, k_] := Sum[b[j, Min[k, j], k]*n^(n-j)*Binomial[n-1, j-1], {j, 0, n}]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Nov 22 2023, from 2nd Maple program *)
Formula
E.g.f. of column k: exp(Sum_{d|k} (-LambertW(-x))^d/d).