cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A209319 Number of functions f:{1,2,...,n}->{1,2,...,n} whose cycle lengths are <= 2.

Original entry on oeis.org

1, 1, 4, 25, 218, 2451, 33832, 554527, 10535100, 227790505, 5525843696, 148673435769, 4394818486456, 141611317636075, 4940870266568160, 185595910032346111, 7468517348971708688, 320562141349559055633, 14619577651630443611200, 706025600924216704982425
Offset: 0

Views

Author

Geoffrey Critzer, Jan 19 2013

Keywords

Examples

			a(3) = 25 because there are 27 functions from {1,2,3} into itself but 2 of these have cycle length of 3: 2,3,1, and 3,1,2.
		

Crossrefs

Column k=2 of A246522.

Programs

  • Maple
    T:= -LambertW(-x):
    egf:= exp(T + T^2/2):
    a:= n-> n!*coeff(series(egf, x, n+1), x, n):
    seq(a(n), n=0..20);  # Alois P. Heinz, Jan 19 2013
  • Mathematica
    nn=20;t=Sum[n^(n-1)x^n/n!,{n,1,nn}];Range[0,nn]!CoefficientList[Series[Exp[Sum[t^i/i,{i,1,2}]],{x,0,nn}],x]

Formula

E.g.f.: exp(T(x) + T(x)^2/2) = A(T(x)) where A(x) is the e.g.f. for A000085 and T(x) is the e.g.f. for A000169.
a(n) ~ 2*exp(3/2)*n^(n-1). - Vaclav Kotesovec, Sep 30 2013

A246523 Number of endofunctions on [n] whose cycle lengths are divisors of 3.

Original entry on oeis.org

1, 1, 3, 18, 157, 1776, 24687, 407464, 7792857, 169554240, 4137133051, 111912543744, 3324740466357, 107628168419968, 3771341043102375, 142230049514309376, 5744687204783023153, 247424591909961916416, 11320453594446364577907, 548348501001426735001600
Offset: 0

Views

Author

Alois P. Heinz, Aug 28 2014

Keywords

Crossrefs

Column k=3 of A246522.

Programs

  • Maple
    with(numtheory):
    egf:= k-> exp(add((-LambertW(-x))^d/d, d=divisors(k))):
    a:= n-> n!*coeff(series(egf(3), x, n+1), x, n):
    seq(a(n), n=0..25);
    # second Maple program:
    with(combinat):
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(multinomial(n, n-i*j, i$j)/j!*b(n-i*j, i-1)*
          (i-1)!^j, j=0..`if`(irem(3, i)=0, n/i, 0))))
        end:
    a:= n-> add(b(j, min(3, j))*n^(n-j)*binomial(n-1, j-1), j=0..n):
    seq(a(n), n=0..25);

Formula

E.g.f.: exp(Sum_{d|3} (-LambertW(-x))^d/d).

A246524 Number of endofunctions on [n] whose cycle lengths are divisors of 4.

Original entry on oeis.org

1, 1, 4, 25, 224, 2601, 37072, 626137, 12227280, 271086625, 6727858496, 184818121929, 5568152828416, 182575550335465, 6473161538599680, 246781048203043561, 10067677495565927168, 437653901985319521153, 20197310874805488471040, 986221173076368356013625
Offset: 0

Views

Author

Alois P. Heinz, Aug 28 2014

Keywords

Crossrefs

Column k=4 of A246522.

Programs

  • Maple
    with(numtheory):
    egf:= k-> exp(add((-LambertW(-x))^d/d, d=divisors(k))):
    a:= n-> n!*coeff(series(egf(4), x, n+1), x, n):
    seq(a(n), n=0..25);
    # second Maple program:
    with(combinat):
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(multinomial(n, n-i*j, i$j)/j!*b(n-i*j, i-1)*
          (i-1)!^j, j=0..`if`(irem(4, i)=0, n/i, 0))))
        end:
    a:= n-> add(b(j, min(4, j))*n^(n-j)*binomial(n-1, j-1), j=0..n):
    seq(a(n), n=0..25);

Formula

E.g.f.: exp(Sum_{d|4} (-LambertW(-x))^d/d).

A246525 Number of endofunctions on [n] whose cycle lengths are divisors of 5.

Original entry on oeis.org

1, 1, 3, 16, 125, 1320, 17671, 286336, 5436153, 118144000, 2889312875, 78480441216, 2343333279157, 76274737767424, 2687742759243375, 101931212748928000, 4139544785141163761, 179235455194948829184, 8242391462093927638867, 401202300756829929472000
Offset: 0

Views

Author

Alois P. Heinz, Aug 28 2014

Keywords

Crossrefs

Column k=5 of A246522.

Programs

  • Maple
    with(numtheory):
    egf:= k-> exp(add((-LambertW(-x))^d/d, d=divisors(k))):
    a:= n-> n!*coeff(series(egf(5), x, n+1), x, n):
    seq(a(n), n=0..25);
    # second Maple program:
    with(combinat):
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(multinomial(n, n-i*j, i$j)/j!*b(n-i*j, i-1)*
          (i-1)!^j, j=0..`if`(irem(5, i)=0, n/i, 0))))
        end:
    a:= n-> add(b(j, min(5, j))*n^(n-j)*binomial(n-1, j-1), j=0..n):
    seq(a(n), n=0..25);

Formula

E.g.f.: exp(Sum_{d|5} (-LambertW(-x))^d/d).

A246526 Number of endofunctions on [n] whose cycle lengths are divisors of 6.

Original entry on oeis.org

1, 1, 4, 27, 250, 2951, 42552, 726097, 14318908, 320511105, 8029282096, 222590246099, 6765751467576, 223748991426247, 7998566722112800, 307359039816710361, 12634664945078752528, 553260940314226017473, 25711427896197877574208, 1263904006537455579001675
Offset: 0

Views

Author

Alois P. Heinz, Aug 28 2014

Keywords

Crossrefs

Column k=6 of A246522.

Programs

  • Maple
    with(numtheory):
    egf:= k-> exp(add((-LambertW(-x))^d/d, d=divisors(k))):
    a:= n-> n!*coeff(series(egf(6), x, n+1), x, n):
    seq(a(n), n=0..25);
    # second Maple program:
    with(combinat):
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(multinomial(n, n-i*j, i$j)/j!*b(n-i*j, i-1)*
          (i-1)!^j, j=0..`if`(irem(6, i)=0, n/i, 0))))
        end:
    a:= n-> add(b(j, min(6, j))*n^(n-j)*binomial(n-1, j-1), j=0..n):
    seq(a(n), n=0..25);

Formula

E.g.f.: exp(Sum_{d|6} (-LambertW(-x))^d/d).

A246527 Number of endofunctions on [n] whose cycle lengths are divisors of 7.

Original entry on oeis.org

1, 1, 3, 16, 125, 1296, 16807, 262864, 4829049, 102073600, 2441582891, 65201946624, 1922453391157, 62009850843136, 2171369477933775, 82007515430081536, 3322113623606686193, 143662773881554108416, 6604529623711334804179, 321608928954695680000000
Offset: 0

Views

Author

Alois P. Heinz, Aug 28 2014

Keywords

Crossrefs

Column k=7 of A246522.

Programs

  • Maple
    with(numtheory):
    egf:= k-> exp(add((-LambertW(-x))^d/d, d=divisors(k))):
    a:= n-> n!*coeff(series(egf(7), x, n+1), x, n):
    seq(a(n), n=0..25);
    # second Maple program:
    with(combinat):
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(multinomial(n, n-i*j, i$j)/j!*b(n-i*j, i-1)*
          (i-1)!^j, j=0..`if`(irem(7, i)=0, n/i, 0))))
        end:
    a:= n-> add(b(j, min(7, j))*n^(n-j)*binomial(n-1, j-1), j=0..n):
    seq(a(n), n=0..25);

Formula

E.g.f.: exp(Sum_{d|7} (-LambertW(-x))^d/d).

A246528 Number of endofunctions on [n] whose cycle lengths are divisors of 8.

Original entry on oeis.org

1, 1, 4, 25, 224, 2601, 37072, 626137, 12232320, 271494865, 6750538496, 185923318329, 5619645500416, 184961854976185, 6585429015521280, 252203521861645561, 10338251689510381568, 451650823526438037153, 20949317446607098716160, 1028215744082428119960025
Offset: 0

Views

Author

Alois P. Heinz, Aug 28 2014

Keywords

Crossrefs

Column k=8 of A246522.

Programs

  • Maple
    with(numtheory):
    egf:= k-> exp(add((-LambertW(-x))^d/d, d=divisors(k))):
    a:= n-> n!*coeff(series(egf(8), x, n+1), x, n):
    seq(a(n), n=0..25);
    # second Maple program:
    with(combinat):
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(multinomial(n, n-i*j, i$j)/j!*b(n-i*j, i-1)*
          (i-1)!^j, j=0..`if`(irem(8, i)=0, n/i, 0))))
        end:
    a:= n-> add(b(j, min(8, j))*n^(n-j)*binomial(n-1, j-1), j=0..n):
    seq(a(n), n=0..25);

Formula

E.g.f.: exp(Sum_{d|8} (-LambertW(-x))^d/d).

A246529 Number of endofunctions on [n] whose cycle lengths are divisors of 9.

Original entry on oeis.org

1, 1, 3, 18, 157, 1776, 24687, 407464, 7792857, 169594560, 4141165051, 112178655744, 3339749183157, 108422228887168, 3812520677598375, 144372964560581376, 5858088633723823153, 253575577033176047616, 11664031615012086920307, 568166632439929892761600
Offset: 0

Views

Author

Alois P. Heinz, Aug 28 2014

Keywords

Crossrefs

Column k=9 of A246522.

Programs

  • Maple
    with(numtheory):
    egf:= k-> exp(add((-LambertW(-x))^d/d, d=divisors(k))):
    a:= n-> n!*coeff(series(egf(9), x, n+1), x, n):
    seq(a(n), n=0..25);
    # second Maple program:
    with(combinat):
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(multinomial(n, n-i*j, i$j)/j!*b(n-i*j, i-1)*
          (i-1)!^j, j=0..`if`(irem(9, i)=0, n/i, 0))))
        end:
    a:= n-> add(b(j, min(9, j))*n^(n-j)*binomial(n-1, j-1), j=0..n):
    seq(a(n), n=0..25);

Formula

E.g.f.: exp(Sum_{d|9} (-LambertW(-x))^d/d).
a(n) - A246523(n) is a multiple of 40320. - M. F. Hasler, Oct 26 2014

A246530 Number of endofunctions on [n] whose cycle lengths are divisors of 10.

Original entry on oeis.org

1, 1, 4, 25, 218, 2475, 34696, 579223, 11220540, 247395097, 6117023600, 167639670441, 5044046990776, 165322086357715, 5863394794421088, 223751099288794375, 9141963589243198736, 398198217292835137137, 18420080017512816009280, 901874615547758970425977
Offset: 0

Views

Author

Alois P. Heinz, Aug 28 2014

Keywords

Crossrefs

Column k=10 of A246522.

Programs

  • Maple
    with(numtheory):
    egf:= k-> exp(add((-LambertW(-x))^d/d, d=divisors(k))):
    a:= n-> n!*coeff(series(egf(10), x, n+1), x, n):
    seq(a(n), n=0..25);
    # second Maple program:
    with(combinat):
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(multinomial(n, n-i*j, i$j)/j!*b(n-i*j, i-1)*
          (i-1)!^j, j=0..`if`(irem(10, i)=0, n/i, 0))))
        end:
    a:= n-> add(b(j, min(10, j))*n^(n-j)*binomial(n-1, j-1), j=0..n):
    seq(a(n), n=0..25);

Formula

E.g.f.: exp(Sum_{d|10} (-LambertW(-x))^d/d).

A246531 Number of endofunctions on [n] whose cycle lengths are divisors of n.

Original entry on oeis.org

1, 1, 4, 18, 224, 1320, 42552, 262864, 12232320, 169594560, 6117023600, 61920993024, 8022787347456, 56694391376896, 5193025319432160, 174746314698336000, 10338252997184749568, 121439552019384139776, 26096843176349347142208, 262144006402373705728000
Offset: 0

Views

Author

Alois P. Heinz, Aug 28 2014

Keywords

Crossrefs

Main diagonal of A246522.

Programs

  • Maple
    with(numtheory):
    egf:= k-> exp(add((-LambertW(-x))^d/d, d=divisors(k))):
    a:= n-> n!*coeff(series(egf(n), x, n+1), x, n):
    seq(a(n), n=0..20);
    # second Maple program:
    with(combinat):
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(multinomial(n, n-i*j, i$j)/j!*b(n-i*j, i-1, k)*
          (i-1)!^j, j=0..`if`(irem(k, i)=0, n/i, 0))))
        end:
    a:= n-> add(b(j$2, n)*n^(n-j)*binomial(n-1, j-1), j=0..n):
    seq(a(n), n=0..20);
  • Mathematica
    multinomial[n_, k_List] := n!/Times @@ (k!);
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0,
         Sum[multinomial[n, Join[{n - i*j},
         Table[i, {j}]]]/j!*b[n - i*j, i - 1, k]*(i - 1)!^j,
         {j, 0, If[Mod[k, i] == 0, n/i, 0]}]]];
    a[n_] := If[n==0, 1, Sum[b[j, j, n]*n^(n-j)*Binomial[n-1, j-1], {j, 0, n}]];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, May 01 2022, after Alois P. Heinz *)

Formula

a(n) = n! * [x^n] exp(Sum_{d|n} (-LambertW(-x))^d/d).
a(n) = A246522(n,n).
Showing 1-10 of 10 results.