cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A246522 Number A(n,k) of endofunctions on [n] whose cycle lengths are divisors of k; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 3, 0, 1, 1, 4, 16, 0, 1, 1, 3, 25, 125, 0, 1, 1, 4, 18, 218, 1296, 0, 1, 1, 3, 25, 157, 2451, 16807, 0, 1, 1, 4, 16, 224, 1776, 33832, 262144, 0, 1, 1, 3, 27, 125, 2601, 24687, 554527, 4782969, 0, 1, 1, 4, 16, 250, 1320, 37072, 407464, 10535100, 100000000, 0
Offset: 0

Views

Author

Alois P. Heinz, Aug 28 2014

Keywords

Examples

			Square array A(n,k) begins:
  1,     1,     1,     1,     1,     1,     1, ...
  0,     1,     1,     1,     1,     1,     1, ...
  0,     3,     4,     3,     4,     3,     4, ...
  0,    16,    25,    18,    25,    16,    27, ...
  0,   125,   218,   157,   224,   125,   250, ...
  0,  1296,  2451,  1776,  2601,  1320,  2951, ...
  0, 16807, 33832, 24687, 37072, 17671, 42552, ...
		

Crossrefs

Main diagonal gives A246531.

Programs

  • Maple
    with(numtheory):
    egf:= k-> exp(add((-LambertW(-x))^d/d, d=divisors(k))):
    A:= (n, k)-> n!*coeff(series(egf(k), x, n+1), x, n):
    seq(seq(A(n, d-n), n=0..d), d=0..12);
    # second Maple program:
    with(combinat):
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(multinomial(n, n-i*j, i$j)/j!*b(n-i*j, i-1, k)*
          (i-1)!^j, j=0..`if`(irem(k, i)=0, n/i, 0))))
        end:
    A:=(n, k)->add(b(j, min(k, j), k)*n^(n-j)*binomial(n-1, j-1), j=0..n):
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    egf[k_] := Exp[Sum[(-ProductLog[-x])^d/d, {d, Divisors[k]}]];
    A[1, 0] = 0; A[0, ] = 1; A[1, ] = 1; A[_, 0] = 0;
    A[n_, k_] := n!*SeriesCoefficient[egf[k], {x, 0, n}];
    Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Dec 04 2014, translated from first Maple program *)
    multinomial[n_, k_List] := n!/Times @@ (k!);
    Unprotect[Power]; 0^0 = 1; Protect[Power];
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[multinomial[n, Join[{n - i*j}, Table[i, {j}]]]/j!*b[n - i*j, i-1, k]*(i-1)!^j, {j, 0, If[Mod[k, i] == 0, n/i, 0]}]]];
    A[n_, k_] := Sum[b[j, Min[k, j], k]*n^(n-j)*Binomial[n-1, j-1], {j, 0, n}];
    Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Nov 22 2023, from 2nd Maple program *)

Formula

E.g.f. of column k: exp(Sum_{d|k} (-LambertW(-x))^d/d).

A208240 Number of functions f:{1,2,...,n}->{1,2,...,n} with at least one cycle of length >= 3.

Original entry on oeis.org

0, 0, 0, 2, 38, 674, 12824, 269016, 6242116, 159629984, 4474156304, 136638234842, 4521281961800, 161263788956178, 6171136558989856, 252297980348513264, 10978226724737842928, 506678120536777708544, 24726830423666093964224, 1272394054736096884141554
Offset: 0

Views

Author

Geoffrey Critzer, Jan 11 2013

Keywords

Comments

a(n) = n^n - A209319(n). - Vaclav Kotesovec, Oct 09 2013

Crossrefs

Cf. A101334.

Programs

  • Maple
    T:= -LambertW(-x):
    egf:= 1/(1-T) -exp(T +T^2/2):
    a:= n-> n! *coeff(series(egf, x, n+1), x, n):
    seq(a(n), n=0..20);  # Alois P. Heinz, Jan 11 2013
  • Mathematica
    nn=20;t=Sum[n^(n-1)x^n/n!,{n,1,nn}];Range[0,nn]!CoefficientList[Series[1/(1-t)-Exp[Sum[t^i/i,{i,1,2}]],{x,0,nn}],x]

Formula

E.g.f.: 1/(1-T(x)) - exp(T(x) + T(x)^2/2) where T(x) is the e.g.f. for A000169.
Showing 1-2 of 2 results.