cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A246584 Number of overcubic partitions of n.

Original entry on oeis.org

1, 2, 6, 12, 26, 48, 92, 160, 282, 470, 784, 1260, 2020, 3152, 4896, 7456, 11290, 16836, 24962, 36556, 53232, 76736, 110012, 156384, 221156, 310482, 433776, 602200, 832224, 1143696, 1565088, 2131072, 2890266, 3902344, 5249356, 7032576, 9389022, 12488368
Offset: 0

Views

Author

N. J. A. Sloane, Sep 03 2014

Keywords

Comments

Convolution of A001935 and A002513. - Vaclav Kotesovec, Aug 16 2019

Crossrefs

Trisections: A246585, A246586, A246587.

Programs

  • Maple
    # to get 140 terms:
    ph:=add(q^(n^2),n=-12..12);
    ph:=series(ph,q,140);
    g1:=1/(subs(q=-q,ph)*subs(q=-q^2,ph));
    g1:=series(g1,q,140);
    seriestolist(%);
    # second Maple program:
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*add(d*
          `if`(irem(d, 4)=2, 3, 2), d=divisors(j)), j=1..n)/n)
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Aug 17 2019
  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1+x^k) * (1+x^(2*k)) / ((1-x^k) * (1-x^(2*k))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 16 2019 *)
    nmax = 50; CoefficientList[Series[Product[(1+x^(2*k)) / (1-x^k)^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 16 2019 *)

Formula

G.f.: Product_{k>=1} (1+x^k) * (1+x^(2*k)) / ((1-x^k) * (1-x^(2*k))). - Vaclav Kotesovec, Aug 16 2019
a(n) ~ 3^(3/4) * exp(sqrt(3*n/2)*Pi) / (2^(19/4)*n^(5/4)). - Vaclav Kotesovec, Aug 16 2019

A246586 First trisection of A246584.

Original entry on oeis.org

2, 26, 160, 784, 3152, 11290, 36556, 110012, 310482, 832224, 2131072, 5249356, 12488368, 28816368, 64676460, 141598304, 303031202, 635197072, 1306210848, 2639071792, 5245173264, 10266881562, 19811351308, 37720810240, 70922550372, 131777935396, 242124952896
Offset: 0

Views

Author

N. J. A. Sloane, Sep 03 2014

Keywords

Crossrefs

Formula

a(n) ~ exp(3*Pi*sqrt(n/2)) / (2^(19/4)*sqrt(3)*n^(5/4)). - Vaclav Kotesovec, Aug 16 2019

A246587 Second trisection of A246584.

Original entry on oeis.org

6, 48, 282, 1260, 4896, 16836, 53232, 156384, 433776, 1143696, 2890266, 7032576, 16557084, 37838052, 84206724, 182913216, 388685430, 809399280, 1654446816, 3323927340, 6572070528, 12801615744, 24590359284, 46619988384, 87302773392, 161597518272, 295849759728
Offset: 0

Views

Author

N. J. A. Sloane, Sep 03 2014

Keywords

Crossrefs

Formula

a(n) ~ exp(3*Pi*sqrt(n/2)) / (2^(19/4)*sqrt(3)*n^(5/4)). - Vaclav Kotesovec, Aug 16 2019
a(n) = A246584(3*n+2). - Alois P. Heinz, Oct 27 2022
Showing 1-3 of 3 results.