A246609 Number T(n,k) of endofunctions on [n] whose cycle lengths are multiples of k; triangle T(n,k), n >= 0, 0 <= k <= n, read by rows.
1, 0, 1, 0, 4, 1, 0, 27, 6, 2, 0, 256, 57, 24, 6, 0, 3125, 680, 300, 120, 24, 0, 46656, 9945, 4480, 2160, 720, 120, 0, 823543, 172032, 78750, 41160, 17640, 5040, 720, 0, 16777216, 3438673, 1591296, 866460, 430080, 161280, 40320, 5040
Offset: 0
Examples
Triangle T(n,k) begins: 1; 0, 1; 0, 4, 1; 0, 27, 6, 2; 0, 256, 57, 24, 6; 0, 3125, 680, 300, 120, 24; 0, 46656, 9945, 4480, 2160, 720, 120; 0, 823543, 172032, 78750, 41160, 17640, 5040, 720; ...
Links
- Alois P. Heinz, Rows n = 0..140, flattened
Crossrefs
Programs
-
Maple
with(combinat): b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i=0 or i>n, 0, add(b(n-i*j, i+k, k)*(i-1)!^j* multinomial(n, n-i*j, i$j)/j!, j=0..n/i))) end: T:= (n, k)->add(b(j, k$2)*n^(n-j)*binomial(n-1, j-1), j=0..n): seq(seq(T(n,k), k=0..n), n=0..10);
-
Mathematica
multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i == 0 || i > n, 0, Sum[b[n-i*j, i+k, k]*(i-1)!^j*multinomial[n, {n-i*j, Sequence @@ Table[i, {j}]}]/j!, {j, 0, n/i}]]]; T[0, 0] = 1; T[n_, k_] := Sum[b[j, k, k]*n^(n-j)*Binomial[n-1, j-1], {j, 0, n}]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Jan 06 2015, after Alois P. Heinz *)
Formula
E.g.f. for column k > 0: 1 / (1 - (-1)^k * LambertW(-x)^k)^(1/k). - Vaclav Kotesovec, Sep 01 2014
Comments