cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246609 Number T(n,k) of endofunctions on [n] whose cycle lengths are multiples of k; triangle T(n,k), n >= 0, 0 <= k <= n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 4, 1, 0, 27, 6, 2, 0, 256, 57, 24, 6, 0, 3125, 680, 300, 120, 24, 0, 46656, 9945, 4480, 2160, 720, 120, 0, 823543, 172032, 78750, 41160, 17640, 5040, 720, 0, 16777216, 3438673, 1591296, 866460, 430080, 161280, 40320, 5040
Offset: 0

Views

Author

Alois P. Heinz, Aug 31 2014

Keywords

Comments

T(n,k) is defined for n,k >= 0. The triangle contains only the terms with k <= n. T(0,k) = 1, T(n,k) = 0 for k > n and n > 0.
Column k > 1 is asymptotic to n^(n - 1/2 + 1/(2*k)) * sqrt(2*Pi) / (2^(1/(2*k)) * k^(1/k) * Gamma(1/(2*k))) * (1 - (3*k-1)*(k-1) * sqrt(2/n) * Gamma(1/(2*k)) / (12 * k^2 * Gamma(1/2+1/(2*k)))). - Vaclav Kotesovec, Sep 01 2014

Examples

			Triangle T(n,k) begins:
  1;
  0,      1;
  0,      4,      1;
  0,     27,      6,     2;
  0,    256,     57,    24,     6;
  0,   3125,    680,   300,   120,    24;
  0,  46656,   9945,  4480,  2160,   720,  120;
  0, 823543, 172032, 78750, 41160, 17640, 5040, 720;
  ...
		

Crossrefs

Main diagonal gives A000142(n-1) for n > 0.
T(2n,n) gives A246618.

Programs

  • Maple
    with(combinat):
    b:= proc(n, i, k) option remember; `if`(n=0, 1,
          `if`(i=0 or i>n, 0, add(b(n-i*j, i+k, k)*(i-1)!^j*
          multinomial(n, n-i*j, i$j)/j!, j=0..n/i)))
        end:
    T:= (n, k)->add(b(j, k$2)*n^(n-j)*binomial(n-1, j-1), j=0..n):
    seq(seq(T(n,k), k=0..n), n=0..10);
  • Mathematica
    multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i == 0 || i > n, 0, Sum[b[n-i*j, i+k, k]*(i-1)!^j*multinomial[n, {n-i*j, Sequence @@ Table[i, {j}]}]/j!, {j, 0, n/i}]]]; T[0, 0] = 1; T[n_, k_] := Sum[b[j, k, k]*n^(n-j)*Binomial[n-1, j-1], {j, 0, n}]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Jan 06 2015, after Alois P. Heinz *)

Formula

E.g.f. for column k > 0: 1 / (1 - (-1)^k * LambertW(-x)^k)^(1/k). - Vaclav Kotesovec, Sep 01 2014