cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246611 Number of endofunctions on [n] whose cycle lengths are multiples of 4.

Original entry on oeis.org

1, 0, 0, 0, 6, 120, 2160, 41160, 866460, 20294064, 526680000, 15036999120, 468848156040, 15859299473160, 578619457031616, 22654279249875000, 947570269816868880, 42174922731482980320, 1990416896317283627520, 99290011292792071612704, 5220362654145754082460000
Offset: 0

Views

Author

Alois P. Heinz, Aug 31 2014

Keywords

Crossrefs

Column k=4 of A246609.

Programs

  • Maple
    with(combinat):
    b:= proc(n, i) option remember; `if`(n=0, 1,
          `if`(i>n, 0, add(b(n-i*j, i+4)*(i-1)!^j*
          multinomial(n, n-i*j, i$j)/j!, j=0..n/i)))
        end:
    a:= a->add(b(j, 4)*n^(n-j)*binomial(n-1, j-1), j=0..n):
    seq(a(n), n=0..20);
  • Mathematica
    CoefficientList[Series[1/(1-LambertW[-x]^4)^(1/4),{x,0,20}],x] * Range[0,20]!  (* Vaclav Kotesovec, Sep 01 2014 *)

Formula

E.g.f.: 1/(1-LambertW(-x)^4)^(1/4). - Vaclav Kotesovec, Sep 01 2014
a(n) ~ n^(n-3/8) * (sqrt(Pi) / (2^(1/8) * Gamma(1/8))) * (1 - 11 * sqrt(2/n) * Gamma(1/8) / (64 * Gamma(5/8))). - Vaclav Kotesovec, Sep 01 2014