A246640 Sequence a(n) = 1 + A001519(n+1) appearing in a certain touching problem for three circles and a chord, together with A246638.
2, 3, 6, 14, 35, 90, 234, 611, 1598, 4182, 10947, 28658, 75026, 196419, 514230, 1346270, 3524579, 9227466, 24157818, 63245987, 165580142, 433494438, 1134903171, 2971215074, 7778742050, 20365011075, 53316291174, 139583862446, 365435296163, 956722026042, 2504730781962
Offset: 0
Examples
a(1) = 3 because c(1) = 0 + 5 + 9 + 2*sqrt(5*9) = 8 + 12*phi which is indeed 8 + 4*3*phi, with 8 = A246638(1).
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Eric Weisstein's World of Mathematics, Descartes' Circle Theorem.
- Wikipedia, Descartes' Theorem.
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (4,-4,1).
Programs
-
Magma
I:=[2, 3, 6]; [n le 3 select I[n] else 4*Self(n-1) - 4*Self(n-2) + Self(n-3): n in [1..30]]; // G. C. Greubel, Dec 20 2017
-
Mathematica
LinearRecurrence[{4,-4,1},{2, 3, 6}, 30] (* or *) CoefficientList[ Series[ (2-5*x+ 2*x^2)/ ((1-x)*(1-3*x+x^2)), {x, 0, 50}], x] (* G. C. Greubel, Dec 20 2017 *)
-
PARI
Vec((2-5*x+2*x^2)/((1-x)*(1-3*x+x^2)) + O(x^30)) \\ Colin Barker, Nov 02 2016
Formula
a(n) = 1 + S(n, 3) - S(n-1, 3) = 1 + A001519(n+1), n>=0, with Chebyshev's S-polynomials (see A049310), and S(-1, x) = 0.
O.g.f.: (2-5*x+2*x^2)/((1-x)*(1-3*x+x^2)).
a(n) = 4*a(n-1) - 4*a(n-2) + a(n-3), n >= 1, with a(-2) = 3, a(-1) = 2 and a(0) = 2.
a(n) = 1+(2^(-1-n)*((3-sqrt(5))^n*(-1+sqrt(5))+(1+sqrt(5))*(3+sqrt(5))^n))/sqrt(5). - Colin Barker, Nov 02 2016
Comments