cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A240926 a(n) = 2 + L(2*n) = 2 + A005248(n), n >= 0, with the Lucas numbers (A000032).

Original entry on oeis.org

4, 5, 9, 20, 49, 125, 324, 845, 2209, 5780, 15129, 39605, 103684, 271445, 710649, 1860500, 4870849, 12752045, 33385284, 87403805, 228826129, 599074580, 1568397609, 4106118245, 10749957124, 28143753125, 73681302249, 192900153620, 505019158609
Offset: 0

Views

Author

Kival Ngaokrajang, Aug 03 2014

Keywords

Comments

This sequence also gives the curvature of touching circles inscribed in a special way in the smaller segment of a circle of radius 5/4 cut by a chord of length 2.
Consider a circle C of radius 5/4 (in some length units) with a chord of length 2. This has been chosen so that the larger sagitta also has length 2. The smaller sagitta has length 1/2. The input, besides the circle C, is the circle C_0 with radius R_0 = 1/4, touching the chord and circle C. The following sequence of circles C_n with radii R_n, n >= 1, is obtained from the conditions that C_n touches (i) the circle C, (ii) the chord and (iii) the circle C_(n-1). The curvature of the n-th circle, C_n = 1/R_n, n >= 0, is conjectured to be a(n). See an illustration given in the link. As found by Wolfdieter Lang (see part II of the proof given by W. Lang in the link), this circle problem is related to the nonnegative solutions of the Pell equation X^2 - 5*Y^2 = 4: a(n) = 2 + X(n) = 2 + A005248(n). For the larger segment below the chord (with sagitta length 2) the sequence would be A115032, see W. Lang's proof given in part I of the link.
If the circle radius and the sagitta length were both equal to 1, the curvature sequence would be A099938.
Essentially a duplicate of A092387. - R. J. Mathar, Jul 07 2023

Crossrefs

Programs

  • Magma
    [2+Lucas(2*n): n in [0..40]]; // Vincenzo Librandi, Oct 08 2015
    
  • Mathematica
    Table[2 + LucasL[2 n], {n, 0, 50}] (* Vincenzo Librandi, Oct 08 2015 *)
  • PARI
    vector(100, n, n--; 2 + fibonacci(2*n-1) + fibonacci(2*n+1)) \\ Altug Alkan, Oct 08 2015

Formula

Conjectures (proved in the next entry) from Colin Barker, Aug 25 2014 (and Aug 27 2014): (Start)
a(n) = (2 + ((1/2)*(3-sqrt(5)))^n + ((1/2)*(3+sqrt(5)))^n).
a(n) = 4*a(n-1) - 4*a(n-2) + a(n-3).
G.f.: -(5*x^2-11*x+4) / ((x-1)*(x^2-3*x+1)). (End)
From Wolfdieter Lang, Aug 26 2014: (Start)
a(n) = 2 + S(n, 3) - S(n-2, 3) = 2 + 2*S(n, 3) - 3*S(n-1, 3).
a(n) = 3*a(n-1) - a(n-2) - 2, n >= 1, with a(-1)= 5 and a(0) = 4 (from the S(n, 3) recurrence or from A005248).
The first of the Colin Barker conjectures above is true because of the Binet-de Moivre formula for L(2*n) (see the Jul 24 2003 Dennis P. Walsh comment on A005248). With phi = (1+sqrt(5))/2, use 1/phi = phi-1, phi^2 = phi+1, (phi-1)^2 = 2 - phi.
His third conjecture (the g.f.) follows from the g.f. of A005248 by adding 2/(1-x).
His second conjecture (recurrence) with input a(-3) = 20, a(-2) = 9 and a(-1) = 5 (from the above given recurrence) leads to his g.f. with the expanded denominator. Thus all three conjectures are true. (End)
a(n) = A005592(n) + 3, with n > 0. - Zino Magri, Feb 16 2015
a(n) = (phi^n + phi^(-n))^2, where phi = A001622 = (1 + sqrt(5))/2. - Diego Rattaggi, Jun 10 2020
Sum_{k>=0} 1/a(k) = A338303. - Amiram Eldar, Oct 22 2020

Extensions

Edited: name changed (after proof has been given in part II of the W. Lang link), comments rewritten, cross refs. and link to Chebyshev index added. - Wolfdieter Lang, Aug 26 2014

A246638 Sequence a(n) = 2 + 3*A001519(n+1) appearing in a certain four circle touching problem together with A246639.

Original entry on oeis.org

5, 8, 17, 41, 104, 269, 701, 1832, 4793, 12545, 32840, 85973, 225077, 589256, 1542689, 4038809, 10573736, 27682397, 72473453, 189737960, 496740425, 1300483313, 3404709512, 8913645221, 23336226149, 61095033224, 159948873521, 418751587337, 1096305888488, 2870166078125, 7514192345885
Offset: 0

Views

Author

Wolfdieter Lang, Aug 31 2014

Keywords

Comments

This sequence is motivated by Kival Ngaokrajang's touching circle problem considered in A240926 and A115032.
a(n), together with b(n) = A246639(n) appears as the curvature c(n) = a(n) + (4*b(n)/5)*phi (phi = (1+sqrt(5))/2, golden section) of the circle which touches i) a circle of radius 5/4 (in some length units) divided by a chord of length 2 into two unequal parts, and ii) the two touching circles in the smaller part which have curvatures A240926(n) and A240926(n+1), both also touching the circle with radius 5/4. See the illustration of Kival Ngaokrajang's link given in A240926, where the first circles in the smaller (upper) part are shown. The present circles will lie in the region between the large circle and two of these circles in the upper part.
Descartes' theorem on touching circles (see the links) is applied here as c(n) = -4/5 + A(n) + A(n+1) + 2*sqrt((-4/5 )*(A(n) + A(n+1)) + A(n)*A(n+1)), with A(n) = A240926(n), n >= 0.
For the proof for the first formula for a(n) given below use the formula for the curvature A240926(n) = 2 + 2*S(n, 3) - 3* S(n-1, 3) (see the W. Lang link in A240926, part II) in c(n) and compare with a(n) from c(n) = a(n) + (4*b(n)/5)*phi. This is done by using standard S-polynomial identities like the three term recurrence and the Cassini-Simson type identity
S(n, x)*S(n-2, x) = -1 + S(n-1, x)^2 (here for x=3). This implies S(n, 3)*S(n-1, 3) = (-1 + S(n, 3)^2 + S(n-1, 3)^2)/3. See also the mentioned link, part III a).
a(n) appears also in the curvature for the touching circles and chord problem in the smaller part of a circle with radius 5/4 dissected by a chord of length 2, together with A246640, where details are given.

Examples

			a(1) = 8 because c(n) = -4/5 + 5 + 9 + 2*sqrt((-4/5 )*(5 + 9) + 5*9) = 4*(2+(13/5)*phi). This is also 8 + (4*13/5)*phi with A246639(1) = 13.
		

Crossrefs

Programs

  • Magma
    I:=[5,8,17]; [n le 3 select I[n] else 4*Self(n-1) - 4*Self(n-2) + Self(n-3): n in [1..30]]; // G. C. Greubel, Dec 20 2017
  • Mathematica
    LinearRecurrence[{4, -4, 1}, {5, 8, 17}, 30] (* or *)  CoefficientList[ Series[(5-12*x+5*x^2)/((1-x)*(1-3*x+x^2)), {x, 0, 50}], x] (* G. C. Greubel, Dec 20 2017 *)
  • PARI
    Vec((5-12*x+5*x^2)/((1-x)*(1-3*x+x^2)) + O(x^30)) \\ Colin Barker, Nov 02 2016
    

Formula

a(n) = 2 + 3*(S(n,3) - S(n-1,3)) = 2 + 3*A001519(n+1), n >= 0, with Chebyshev's S-polynomials (see A049310).
O.g.f.: (5-12*x+5*x^2)/((1-x)*(1-3*x+x^2)).
a(n) = 4*a(n-1) - 4*a(n-2) + a(n-3), n >=1, a(-2) = 8, a(-1) = 5, a(0) = 5.
a(n) = (2^(-1-n)*(5*2^(2+n)-3*(3-sqrt(5))^n*(-5+sqrt(5))+3*(3+sqrt(5))^n*(5+sqrt(5))))/5. - Colin Barker, Nov 02 2016
Showing 1-2 of 2 results.