cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246654 T(n,k) = 2*(K(n,2)*I(k,2) - (-1)^(n+k)*I(n,2)*K(k,2)), where I(n,x) and K(n,x) are Bessel functions; triangle read by rows for 0 <= k <= n.

Original entry on oeis.org

0, 1, 0, 1, 1, 0, 3, 2, 1, 0, 10, 7, 3, 1, 0, 43, 30, 13, 4, 1, 0, 225, 157, 68, 21, 5, 1, 0, 1393, 972, 421, 130, 31, 6, 1, 0, 9976, 6961, 3015, 931, 222, 43, 7, 1, 0, 81201, 56660, 24541, 7578, 1807, 350, 57, 8, 1, 0, 740785, 516901, 223884, 69133, 16485, 3193, 520, 73, 9, 1, 0
Offset: 0

Views

Author

Peter Luschny, Sep 12 2014

Keywords

Examples

			T(n, k) as a rectangular matrix (for n >= 0). Only the lower infinite triangle (0 <= k <=n) constitutes the sequence although T(n,k) is defined for all (n,k) in Z^2.
[   0,    1,   -1,   3, -10,  43, -225, 1393, -9976]
[   1,    0,    1,  -2,   7, -30,  157, -972,  6961]
[   1,    1,    0,   1,  -3,  13,  -68,  421, -3015]
[   3,    2,    1,   0,   1,  -4,   21, -130,   931]
[  10,    7,    3,   1,   0,   1,   -5,   31,  -222]
[  43,   30,   13,   4,   1,   0,    1,   -6,    43]
[ 225,  157,   68,  21,   5,   1,    0,    1,    -7]
[1393,  972,  421, 130,  31,   6,    1,    0,     1]
[9976, 6961, 3015, 931, 222,  43,    7,    1,     0]
The diagonals d(n,k) = T(n+k-floor(n/2),k-floor(n/2)) are represented by polynomials described in A246656.
   n\k:    0   1    2     3    4     p_n(x)
-------------------------------------------------------
d(0,k):    0,  0,   0,    0,   0, .. 0                   A000004
d(1,k):    1,  1,   1,    1,   1, .. 1                   A000012
d(2,k):  [0],  1,   2,    3,   4, .. x                   A001477
d(3,k):  [1],  3,   7,   13,  21, .. x^2+x+1             A002061
d(4,k):  [0,  2],  10,   30,  68, .. x^3+x               A034262
d(5,k):  [1,  7],  43,  157, 421, .. x^4+2*x^3+2*x^2+x+1
		

Crossrefs

T(n+0,0) = A001040(n).
T(n+1,1) = A001053(n+1).
T(n+2,2) = A058307(n).
T(n+3,3) = A058308(n).
T(n+4,4) = A058309(n).

Programs

  • Maple
    T := (n, k) -> (BesselK(n,2)*BesselI(k,2) - (-1)^(n+k)*BesselI(n,2) *BesselK(k,2))*2; seq(lprint(seq(round(evalf(T(n,k),99)), k=0..n)), n=0..8);
    # Recurrence
    T := proc(n,k) option remember; local m; m := n-1;
    if  k > m or k < 0 then 0 elif k = m then 1 else T(m-1,k) + m*T(m,k) fi end:
    seq(print(seq(T(n,k), k=0..n)), n=0..8);
  • Mathematica
    T[n_, k_] := T[n, k] = With[{m = n - 1}, If[k > m || k < 0, 0, If[k == m, 1, T[m - 1, k] + m*T[m, k]]]];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Aug 03 2019 *)
  • Sage
    def A246654_col(n, k): # k-th column of the triangle
        if n < 2: return n
        return hypergeometric([(1-n)/2, 1-n/2], [1-n, 1+k, 1-n-k], 4) *rising_factorial(k+1,n-1)
    for k in range(6): [round(A246654_col(n,k).n(100)) for n in (0..10)]

Formula

T(n+k,k) = hypergeom([(1-n)/2, 1-n/2], [1-n, 1+k, 1-n-k], 4)* Pochhammer(k+1, n-1).
Recurrence: T(n,k) = T(n-2,k)+(n-1)*T(n-1,k), T(n,n)=0, T(n,n-1)=1.
T(n,k) = T(n,-k) = T(-n,k) = T(-n,-k).