cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246674 Run Length Transform of A000225.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 3, 7, 1, 1, 1, 3, 3, 3, 7, 15, 1, 1, 1, 3, 1, 1, 3, 7, 3, 3, 3, 9, 7, 7, 15, 31, 1, 1, 1, 3, 1, 1, 3, 7, 1, 1, 1, 3, 3, 3, 7, 15, 3, 3, 3, 9, 3, 3, 9, 21, 7, 7, 7, 21, 15, 15, 31, 63, 1, 1, 1, 3, 1, 1, 3, 7, 1, 1, 1, 3, 3, 3, 7, 15, 1, 1, 1, 3, 1, 1, 3, 7, 3, 3, 3, 9, 7, 7, 15, 31, 3, 3, 3, 9, 3, 3, 9, 21, 3, 3, 3, 9, 9, 9, 21, 45, 7, 7, 7, 21, 7, 7, 21, 49, 15, 15, 15, 45, 31, 31, 63, 127, 1
Offset: 0

Views

Author

Antti Karttunen, Sep 08 2014

Keywords

Comments

a(n) can be also computed by replacing all consecutive runs of zeros in the binary expansion of n with * (multiplication sign), and then performing that multiplication, still in binary, after which the result is converted into decimal. See the example below.

Examples

			115 is '1110011' in binary. The run lengths of 1-runs are 2 and 3, thus a(115) = A000225(2) * A000225(3) = ((2^2)-1) * ((2^3)-1) = 3*7 = 21.
The same result can be also obtained more directly, by realizing that '111' and '11' are the binary representations of 7 and 3, and 7*3 = 21.
From _Omar E. Pol_, Feb 15 2015: (Start)
Written as an irregular triangle in which row lengths are the terms of A011782:
1;
1;
1,3;
1,1,3,7;
1,1,1,3,3,3,7,15;
1,1,1,3,1,1,3,7,3,3,3,9,7,7,15,31;
1,1,1,3,1,1,3,7,1,1,1,3,3,3,7,15,3,3,3,9,3,3,9,21,7,7,7,21,15,15,31,63;
...
Right border gives 1 together with the positive terms of A000225.
(End)
		

Crossrefs

Cf. A003714 (gives the positions of ones).
A001316 is obtained when the same transformation is applied to A000079, the powers of two.
Run Length Transforms of other sequences: A071053, A227349, A246588, A246595, A246596, A246660, A246661, A246685, A247282.

Programs

  • Mathematica
    f[n_] := 2^n - 1; Table[Times @@ (f[Length[#]]&) /@ Select[ Split[ IntegerDigits[n, 2]], #[[1]] == 1&], {n, 0, 100}] (* Jean-François Alcover, Jul 11 2017 *)
  • Python
    # uses RLT function in A278159
    def A246674(n): return RLT(n,lambda m: 2**m-1) # Chai Wah Wu, Feb 04 2022

Formula

For all n >= 0, a(A051179(n)) = A247282(A051179(n)) = A051179(n).