cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A246278 Prime shift array: Square array read by antidiagonals: A(1,col) = 2*col, and for row > 1, A(row,col) = A003961(A(row-1,col)).

Original entry on oeis.org

2, 4, 3, 6, 9, 5, 8, 15, 25, 7, 10, 27, 35, 49, 11, 12, 21, 125, 77, 121, 13, 14, 45, 55, 343, 143, 169, 17, 16, 33, 175, 91, 1331, 221, 289, 19, 18, 81, 65, 539, 187, 2197, 323, 361, 23, 20, 75, 625, 119, 1573, 247, 4913, 437, 529, 29, 22, 63, 245, 2401, 209, 2873, 391, 6859, 667, 841, 31
Offset: 2

Views

Author

Antti Karttunen, Aug 21 2014

Keywords

Comments

The array is read by antidiagonals: A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.
This array can be obtained by taking every second column from array A242378, starting from its column 2.
Permutation of natural numbers larger than 1.
The terms on row n are all divisible by n-th prime, A000040(n).
Each column is strictly growing, and the terms in the same column have the same prime signature.
A055396(n) gives the row number of row where n occurs,
and A246277(n) gives its column number, both starting from 1.
From Antti Karttunen, Jan 03 2015: (Start)
A252759(n) gives their sum minus one, i.e. the Manhattan distance of n from the top left corner.
If we assume here that a(1) = 1 (but which is not explicitly included because outside of the array), then A252752 gives the inverse permutation. See also A246276.
(End)

Examples

			The top left corner of the array:
   2,     4,     6,     8,    10,    12,    14,    16,    18, ...
   3,     9,    15,    27,    21,    45,    33,    81,    75, ...
   5,    25,    35,   125,    55,   175,    65,   625,   245, ...
   7,    49,    77,   343,    91,   539,   119,  2401,   847, ...
  11,   121,   143,  1331,   187,  1573,   209, 14641,  1859, ...
  13,   169,   221,  2197,   247,  2873,   299, 28561,  3757, ...
		

Crossrefs

First row: A005843 (the even numbers), from 2 onward.
Row 2: A249734, Row 3: A249827.
Column 1: A000040 (primes), Column 2: A001248 (squares of primes), Column 3: A006094 (products of two successive primes), Column 4: A030078 (cubes of primes).
Transpose: A246279.
Inverse permutation: A252752.
One more than A246275.
Arrays obtained by applying a particular function (given in parentheses) to the entries of this array. Cases where the columns grow monotonically are indicated with *: A249822 (A078898), A253551 (* A156552), A253561 (* A122111), A341605 (A017665), A341606 (A017666), A341607 (A006530 o A017666), A341608 (A341524), A341626 (A341526), A341627 (A341527), A341628 (A006530 o A341527), A342674 (A341530), A344027 (* A003415, arithmetic derivative), A355924 (A342671), A355925 (A009194), A355926 (A355442), A355927 (* sigma), A356155 (* A258851), A372562 (A252748), A372563 (A286385), A378979 (* deficiency, A033879), A379008 (* (probably), A294898), A379010 (* A000010, Euler phi), A379011 (* A083254).
Cf. A329050 (subtable).

Programs

  • Mathematica
    f[p_?PrimeQ] := f[p] = Prime[PrimePi@ p + 1]; f[1] = 1; f[n_] := f[n] = Times @@ (f[First@ #]^Last@ # &) /@ FactorInteger@ n; Block[{lim = 12}, Table[#[[n - k, k]], {n, 2, lim}, {k, n - 1, 1, -1}] &@ NestList[Map[f, #] &, Table[2 k, {k, lim}], lim]] // Flatten (* Michael De Vlieger, Jan 04 2016, after Jean-François Alcover at A003961 *)
  • Scheme
    (define (A246278 n) (if (<= n 1) n (A246278bi (A002260 (- n 1)) (A004736 (- n 1))))) ;; Square array starts with offset=2, and we have also tacitly defined a(1) = 1 here.
    (define (A246278bi row col) (if (= 1 row) (* 2 col) (A003961 (A246278bi (- row 1) col))))

Formula

A(1,col) = 2*col, and for row > 1, A(row,col) = A003961(A(row-1,col)).
As a composition of other similar sequences:
a(n) = A122111(A253561(n)).
a(n) = A249818(A083221(n)).
For all n >= 1, a(n+1) = A005940(1+A253551(n)).
A(n, k) = A341606(n, k) * A355925(n, k). - Antti Karttunen, Jul 22 2022

Extensions

Starting offset of the linear sequence changed from 1 to 2, without affecting the column and row indices by Antti Karttunen, Jan 03 2015

A242378 Square array read by antidiagonals: to obtain A(i,j), replace each prime factor prime(k) in prime factorization of j with prime(k+i).

Original entry on oeis.org

0, 1, 0, 2, 1, 0, 3, 3, 1, 0, 4, 5, 5, 1, 0, 5, 9, 7, 7, 1, 0, 6, 7, 25, 11, 11, 1, 0, 7, 15, 11, 49, 13, 13, 1, 0, 8, 11, 35, 13, 121, 17, 17, 1, 0, 9, 27, 13, 77, 17, 169, 19, 19, 1, 0, 10, 25, 125, 17, 143, 19, 289, 23, 23, 1, 0, 11, 21, 49, 343, 19, 221, 23, 361, 29, 29, 1, 0
Offset: 0

Views

Author

Antti Karttunen, May 12 2014

Keywords

Comments

Each row i is a multiplicative function, being in essence "the i-th power" of A003961, i.e., A(i,j) = A003961^i (j). Zeroth power gives an identity function, A001477, which occurs as the row zero.
The terms in the same column have the same prime signature.
The array is read by antidiagonals: A(0,0), A(0,1), A(1,0), A(0,2), A(1,1), A(2,0), ... .

Examples

			The top-left corner of the array:
  0,   1,   2,   3,   4,   5,   6,   7,   8, ...
  0,   1,   3,   5,   9,   7,  15,  11,  27, ...
  0,   1,   5,   7,  25,  11,  35,  13, 125, ...
  0,   1,   7,  11,  49,  13,  77,  17, 343, ...
  0,   1,  11,  13, 121,  17, 143,  19,1331, ...
  0,   1,  13,  17, 169,  19, 221,  23,2197, ...
...
A(2,6) = A003961(A003961(6)) = p_{1+2} * p_{2+2} = p_3 * p_4 = 5 * 7 = 35, because 6 = 2*3 = p_1 * p_2.
		

Crossrefs

Taking every second column from column 2 onward gives array A246278 which is a permutation of natural numbers larger than 1.
Transpose: A242379.
Row 0: A001477, Row 1: A003961 (from 1 onward), Row 2: A357852 (from 1 onward), Row 3: A045968 (from 7 onward), Row 4: A045970 (from 11 onward).
Column 2: A000040 (primes), Column 3: A065091 (odd primes), Column 4: A001248 (squares of primes), Column 6: A006094 (products of two successive primes), Column 8: A030078 (cubes of primes).
Excluding column 0, a subtable of A297845.
Permutations whose formulas refer to this array: A122111, A241909, A242415, A242419, A246676, A246678, A246684.

Formula

A(0,j) = j, A(i,0) = 0, A(i > 0, j > 0) = A003961(A(i-1,j)).
For j > 0, A(i,j) = A297845(A000040(i+1),j) = A297845(j,A000040(i+1)). - Peter Munn, Sep 02 2025

A246676 Permutation of natural numbers: a(n) = A242378(A007814(n), (1+A000265(n))) - 1.

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 7, 6, 9, 14, 11, 24, 13, 26, 15, 10, 17, 20, 19, 34, 21, 44, 23, 48, 25, 32, 27, 124, 29, 80, 31, 12, 33, 74, 35, 54, 37, 62, 39, 76, 41, 38, 43, 174, 45, 134, 47, 120, 49, 50, 51, 64, 53, 98, 55, 342, 57, 104, 59, 624, 61, 242, 63, 16, 65, 56, 67, 244, 69, 224, 71, 90, 73, 68
Offset: 1

Views

Author

Antti Karttunen, Sep 01 2014

Keywords

Comments

To compute a(n) we shift its binary representation right as many steps k as necessary that the result were an odd number. Then one is added to that odd number, and the prime factorization of the resulting even number is shifted the same k number of steps towards larger primes, whose product is then decremented by one to get the final result.
In the essence, a(n) tells which number in array A246275 is at the same position where n is in the array A135764. As the topmost row in both arrays is A005408 (odd numbers), they are fixed, i.e. a(2n+1) = 2n+1 for all n.
Equally: a(n) tells which number in array A246273 is at the same position where n is in the array A054582, as they are the transposes of above two arrays.

Examples

			Consider n=36, "100100" in binary. It has to be shifted two bits right that the result were an odd number 9, "1001" in binary. We see that 9+1 = 10 = 2*5 = p_1 * p_3 [where p_k denotes the k-th prime, A000040(k)], and shifting this two steps towards larger primes results p_3 * p_5 = 5*11 = 55, thus a(36) = 55-1 = 54.
		

Crossrefs

Inverse: A246675.
Even bisection halved: A246680.
More recursed versions: A246678, A246684.
Other related permutations: A209268, A246273, A246275, A135764, A054582.

Programs

Formula

a(n) = A242378(A007814(n), (1+A000265(n))) - 1. [Where the bivariate function A242378(k,n) changes each prime p(i) in the prime factorization of n to p(i+k), i.e., it's the result of A003961 iterated k times starting from n].
As a composition of related permutations:
a(n) = A246273(A209268(n)).
Other identities:
For all n >= 0, a(A005408(n)) = A005408(n). [Fixes the odd numbers].

A249814 "Mountains of Eratosthenes" permutation: a(1) = 1, a(n) = A249741(A001511(n), a(A003602(n))).

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 7, 6, 9, 14, 15, 24, 13, 20, 11, 10, 17, 26, 27, 34, 29, 44, 47, 48, 25, 38, 39, 54, 21, 32, 19, 12, 33, 50, 51, 64, 53, 80, 67, 76, 57, 86, 87, 114, 93, 140, 95, 120, 49, 74, 75, 94, 77, 116, 107, 90, 41, 62, 63, 84, 37, 56, 23, 16, 65, 98, 99, 124, 101, 152, 127, 118, 105, 158, 159, 204, 133, 200, 151, 142
Offset: 1

Views

Author

Antti Karttunen, Nov 06 2014

Keywords

Comments

This sequence is a "recursed variant" of A249811.
From Antti Karttunen, Jan 18 2015: (Start)
This can be viewed as an entanglement or encoding permutation where the complementary pairs of sequences to be interwoven together are even and odd numbers (A005843/A005408) which are entangled with another complementary pair: even numbers in the order they appear in A253886 and odd numbers in their usual order: (A253886/A005408).
From the above follows also that this sequence can be represented as a binary tree. Each child to the left is obtained by doubling the parent and subtracting one, and each child to the right is obtained by applying A253886 to the parent:
1
|
...................2...................
3 4
5......../ \........8 7......../ \........6
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
9 14 15 24 13 20 11 10
17 26 27 34 29 44 47 48 25 38 39 54 21 32 19 12
(End)
For listening I recommend some (mostly) percussive MIDI-instrument and the pitch offset set to at least 29 and the tempo (rate) to about 60. - Antti Karttunen, Feb 17 2015

Crossrefs

Inverse: A249813.
Similar or related permutations: A246684, A249811, A250244, A252755.
Compare also the scatterplot of this sequence to the graphs of A252755 and A246684.
Differs from A246684 for the first time at n=14, where a(14) = 20, while A246684(14) = 26.

Formula

In the following formulas, A083221 and A249741 are interpreted as bivariate functions:
a(1) = 1, for n>1: a(n) = A083221(A001511(n), a(A003602(n))) - 1 = A249741(A001511(n), a(A003602(n))).
a(1) = 1, a(2n) = A253886(a(n)), a(2n+1) = (2*a(n+1))-1. - Antti Karttunen, Jan 18 2015
As a composition of other permutations:
a(n) = A250244(A246684(n)).
Other identities. For all n >= 1, the following holds:
a(n) = (1+a((2*n)-1))/2. [The odd bisection from a(1) onward with one added and then halved gives the sequence back.]
a(A000079(n-1)) = A006093(n).

A246683 Permutation of natural numbers: a(1) = 1, a(n) = A000079(A055396(n+1)-1) * ((2*a(A246277(n+1))) - 1).

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 7, 6, 9, 16, 15, 32, 13, 10, 11, 64, 17, 128, 31, 18, 29, 256, 63, 12, 25, 14, 19, 512, 21, 1024, 127, 26, 33, 20, 255, 2048, 61, 58, 35, 4096, 57, 8192, 511, 30, 125, 16384, 23, 24, 49, 50, 27, 32768, 37, 36, 1023, 66, 41, 65536, 2047, 131072, 253, 62, 51, 52, 65, 262144, 39, 122, 509, 524288, 4095, 1048576, 121
Offset: 1

Views

Author

Antti Karttunen, Sep 06 2014

Keywords

Comments

See the comments in A246675. This is otherwise similar permutation, except that after having reached an even number 2m when we have shifted the prime factorization of n+1 k steps towards smaller primes, here, in contrary to A246675, we don't shift the binary representation of the odd number 2m-1, but instead of an odd number (2*a(m))-1 the same number (k) of bit-positions leftward, i.e. multiply it with 2^k.
See also the comments at the inverse permutation A246684.

Examples

			Consider 44 = 45-1. To find 45's position in array A246278, we start shifting its prime factorization 45 = 3 * 3 * 5 = p_2 * p_2 * p_3, step by step, until we get an even number, which in this case happens immediately after the first step, as p_1 * p_1 * p_2 = 2*2*3 = 12. 12 is in the 6th column of A246278, thus we take [here a(6) is computed recursively in the same way:] (2*a(6))-1 = (2*8)-1 = 15, "1111" in binary, and shift it one bit left (that is, multiply by 2), to give 2*15 = 30, thus a(44) = 30.
		

Crossrefs

Inverse: A246684.
Variants: A246675, A246677.
Differs from A249813 for the first time at n=20, where a(20) = 18, while A249813(20) = 14.

Formula

a(1) = 1, a(n) = A000079(A055396(n+1)-1) * ((2*a(A246277(n+1))) - 1).
As a composition of other permutations:
a(n) = A249813(A250244(n)).
Other identities. For all n >= 1, the following holds:
a(n) = (1+a((2*n)-1))/2. [The odd bisection from a(1) onward with one added and then halved gives the sequence back].
For all n >= 0, the following holds: a(A000051(n)) = A000051(n). [Numbers of the form 2^n + 1 are among the fixed points].

A250243 Permutation of natural numbers: a(n) = A246275(A055396(n+1), a(A078898(n+1))).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 26, 21, 22, 23, 24, 25, 20, 27, 28, 29, 30, 31, 44, 33, 34, 35, 36, 37, 32, 51, 40, 41, 42, 43, 80, 45, 46, 47, 48, 49, 74, 39, 52, 53, 124, 55, 62, 57, 58, 59, 60, 61, 38, 87, 54, 65, 66, 67, 134, 69, 70, 71, 72, 73, 50, 63, 76, 101, 78, 79, 98, 81
Offset: 1

Views

Author

Antti Karttunen, Nov 16 2014

Keywords

Comments

This is a "more recursed" variant of A249816. Preserves the parity of n.

Crossrefs

Inverse: A250244.
Similar or related permutations: A246684, A249813, A250246.
Differs from A249815 and A250244 for the first time at n=32, where a(32) = 44, while A249815(32) = A250244(32) = 38.
Differs from "shallow variant" A249816 for the first time at n=39, where a(39) = 51, while A249816(39) = 39.

Formula

a(n) = A246275(A055396(n+1), a(A078898(n+1))).
As a composition of other permutations:
a(n) = A246684(A249813(n)).
Other identities. For all n >= 1, the following holds:
a(n) = (1+a((2*n)-1))/2. [The odd bisection from a(1) onward with one added and then halved gives the sequence back.]
a(A006093(n)) = A006093(n). [Primes minus one are among the fixed points].

A246678 Permutation of natural numbers: a(1) = 1, a(2n+1) = 1 + 2*a(n), a(2n) = A242378(A001511(n), (1+A000265(n))) - 1.

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 7, 6, 9, 14, 11, 24, 17, 26, 15, 10, 13, 20, 19, 34, 29, 44, 23, 48, 49, 32, 35, 124, 53, 80, 31, 12, 21, 74, 27, 54, 41, 62, 39, 76, 69, 38, 59, 174, 89, 134, 47, 120, 97, 50, 99, 64, 65, 98, 71, 342, 249, 104, 107, 624, 161, 242, 63, 16, 25, 56, 43, 244, 149, 224, 55, 90, 109, 68, 83
Offset: 1

Views

Author

Antti Karttunen, Sep 01 2014

Keywords

Comments

See the comments in A246676. This is a similar permutation, except for odd numbers, which are here recursively permuted by the emerging permutation itself. The even bisection halved gives A246680, the odd bisection from a(3) onward with one subtracted and then halved gives this sequence back.

Crossrefs

Inverse: A246677.
Variants: A246676, A246684.
Even bisection halved: A246680.

Formula

a(1) = 1, a(2n+1) = 1 + 2*a(n), a(2n) = A242378(A001511(n), (1+A000265(n))) - 1. [Where the bivariate function A242378(k,n) changes each prime p(i) in the prime factorization of n to p(i+k), i.e., it's the result of A003961 iterated k times starting from n].

A253885 Permutation of even numbers: a(n) = A003961(n+1) - 1.

Original entry on oeis.org

0, 2, 4, 8, 6, 14, 10, 26, 24, 20, 12, 44, 16, 32, 34, 80, 18, 74, 22, 62, 54, 38, 28, 134, 48, 50, 124, 98, 30, 104, 36, 242, 64, 56, 76, 224, 40, 68, 84, 188, 42, 164, 46, 116, 174, 86, 52, 404, 120, 146, 94, 152, 58, 374, 90, 296, 114, 92, 60, 314, 66, 110, 274, 728, 118, 194, 70, 170, 144, 230, 72, 674, 78, 122, 244, 206, 142, 254, 82
Offset: 0

Views

Author

Antti Karttunen, Jan 18 2015

Keywords

Crossrefs

Programs

Formula

a(n) = A003961(n+1) - 1.
a(n) = A243501(n+1) - 2.
Showing 1-8 of 8 results.