cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246697 Row sums of the triangular array A246696.

Original entry on oeis.org

1, 5, 16, 34, 67, 111, 178, 260, 373, 505, 676, 870, 1111, 1379, 1702, 2056, 2473, 2925, 3448, 4010, 4651, 5335, 6106, 6924, 7837, 8801, 9868, 10990, 12223, 13515, 14926, 16400, 18001, 19669, 21472, 23346, 25363, 27455, 29698, 32020, 34501, 37065, 39796
Offset: 0

Views

Author

Clark Kimberling, Sep 02 2014

Keywords

Examples

			First 5 rows of A246694 preceded by sums
sum = 1: ...... 1;
sum = 5: ...... 2 ... 3;
sum = 16: ..... 5 ... 4 ... 7;
sum = 34: ..... 6 ... 9 ... 8 ... 11;
sum = 67: ..... 13 .. 10 .. 15 .. 12 .. 17.
		

Crossrefs

Programs

  • Mathematica
    z = 25; t[0, 0] = 1; t[1, 0] = 2; t[1, 1] = 3; t[n_, 0] := t[n, 0] = If[OddQ[n], t[n - 1, n - 2] + 2, t[n - 1, n - 1] + 2]; t[n_, 1] := t[n, 1] = If[OddQ[n], t[n - 1, n - 1] + 2, t[n - 1, n - 2] + 2]
    t[n_, k_] := t[n, k] = t[n, k - 2] + 2;
    u = Flatten[Table[t[n, k], {n, 0, z}, {k, 0, n}]] (* A246696 *)
    Table[Sum[t[n, k], {k, 0, n}], {n, 0, 2*z}] (* A246697 *)

Formula

Conjectured linear recurrence: a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6), with a(0) = 1, a(1) = 5, a(2) = 16, a(3) = 34, a(4) = 67, a(5) = 111, a(6) = 178.
Conjectured g.f.: (1 + 3*x + 5*x^2 + x^3 + 2*x^4)/((x - 1)^4*(x + 1)^2).
Conjecture: a(n) = (2*n^3+6*n^2+9*n+4+n*(-1)^n)/4. - Luce ETIENNE, Oct 16 2016
Conjectured e.g.f.: ((2 + 8*x + 6*x^2 + x^3)*cosh(x) + (2 + 9*x + 6*x^2 + x^3)*sinh(x))/2. - Stefano Spezia, May 10 2021

Extensions

Corrected and edited by M. F. Hasler, Nov 17 2014