A246697 Row sums of the triangular array A246696.
1, 5, 16, 34, 67, 111, 178, 260, 373, 505, 676, 870, 1111, 1379, 1702, 2056, 2473, 2925, 3448, 4010, 4651, 5335, 6106, 6924, 7837, 8801, 9868, 10990, 12223, 13515, 14926, 16400, 18001, 19669, 21472, 23346, 25363, 27455, 29698, 32020, 34501, 37065, 39796
Offset: 0
Examples
First 5 rows of A246694 preceded by sums sum = 1: ...... 1; sum = 5: ...... 2 ... 3; sum = 16: ..... 5 ... 4 ... 7; sum = 34: ..... 6 ... 9 ... 8 ... 11; sum = 67: ..... 13 .. 10 .. 15 .. 12 .. 17.
Programs
-
Mathematica
z = 25; t[0, 0] = 1; t[1, 0] = 2; t[1, 1] = 3; t[n_, 0] := t[n, 0] = If[OddQ[n], t[n - 1, n - 2] + 2, t[n - 1, n - 1] + 2]; t[n_, 1] := t[n, 1] = If[OddQ[n], t[n - 1, n - 1] + 2, t[n - 1, n - 2] + 2] t[n_, k_] := t[n, k] = t[n, k - 2] + 2; u = Flatten[Table[t[n, k], {n, 0, z}, {k, 0, n}]] (* A246696 *) Table[Sum[t[n, k], {k, 0, n}], {n, 0, 2*z}] (* A246697 *)
Formula
Conjectured linear recurrence: a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6), with a(0) = 1, a(1) = 5, a(2) = 16, a(3) = 34, a(4) = 67, a(5) = 111, a(6) = 178.
Conjectured g.f.: (1 + 3*x + 5*x^2 + x^3 + 2*x^4)/((x - 1)^4*(x + 1)^2).
Conjecture: a(n) = (2*n^3+6*n^2+9*n+4+n*(-1)^n)/4. - Luce ETIENNE, Oct 16 2016
Conjectured e.g.f.: ((2 + 8*x + 6*x^2 + x^3)*cosh(x) + (2 + 9*x + 6*x^2 + x^3)*sinh(x))/2. - Stefano Spezia, May 10 2021
Extensions
Corrected and edited by M. F. Hasler, Nov 17 2014