A246753 Triangular numbers with strictly increasing product of digits.
1, 3, 6, 28, 36, 45, 55, 66, 78, 276, 378, 496, 595, 1596, 2485, 2775, 3486, 4656, 5565, 5778, 5995, 8778, 25878, 26796, 35778, 47586, 47895, 58996, 196878, 277885, 359976, 378885, 448878, 468996, 569778, 786885, 887778, 2489796, 2797795, 3667986, 3689686, 3887866
Offset: 1
Examples
a(4) = 28 = 7 * (7 + 1) / 2, which is 7th triangular number with product of digits = 2 * 8 = 16. a(5) = 36 = 8 * (8 + 1) / 2, which is 8th triangular number with product of digits = 3 *6 = 18. Since 18 > 16, 28 and 36 are in list.
Links
- K. D. Bajpai, Table of n, a(n) for n = 1..159
Programs
-
Mathematica
A246753 = {}; t = 0; Do[k = n*(n + 1)/2; s = Apply[Times, IntegerDigits[k]];If[s > t, t = s; AppendTo[A246753, k]], {n, 1, 100}]; A246753 DeleteDuplicates[{#,Times@@IntegerDigits[#]}&/@Accumulate[Range[3000]],GreaterEqual[#1[[2]],#2[[2]]]&][[;;,1]] (* Harvey P. Dale, Oct 29 2024 *)