cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246792 Smallest number m such that for 0 < k < n+1, np(m+k-1) = np(m)-k+1, where np(t) is number of primes p with prime(t) < p < prime(t)^(1 + 1/t).

Original entry on oeis.org

1, 7, 25, 25, 181, 208, 208, 1867, 14345, 19609, 40918, 40918, 620326, 2552265, 2552265, 7225612, 7225612, 16679492, 33772734, 33772734, 33772734, 620326386, 1516416904, 1516416904, 4764006481, 5272314878, 21423652192
Offset: 1

Views

Author

Farideh Firoozbakht, Oct 16 2014

Keywords

Comments

np(m) = A182134(m).
According to the definition, numbers np(a(n)), np(a(n)+1), ..., np(a(n)+n-2) and np(a(n)+n-1) are n consecutive numbers in descending order.
a(34) > 10^12. - Robert Price, Dec 07 2014
See A251736 for the corresponding values of np.

Examples

			a(15) = 2552265, since np(2552265) = 24, np(2552265+1) = 23 , ..., np(2552265+13) = 11, np(2552265+14) = 10 are 15 consecutive numbers in descending order.
		

Crossrefs

Programs

  • Mathematica
    np[t_] := np[t] = Length[Select[Range[Prime[t]+1,Prime[t]^(1+1/t)],PrimeQ]]; a[1]=1; a[n_] := a[n] = (For[m = a[n-1],c = Table[np[m+k-1],{k,n}]; c !=  Reverse[Range[Min[c], Max[c]]], m++]; m); Do[Print[a[n]],{n,15}]
  • PARI
    np(n) = primepi(prime(n)^(1+1/n))-n;
    isok(m, n) = {for (k=1, n, if (np(m+k-1) != np(m)-k+1, return (0));); return (1);}
    a(n) = {m = 1; while (! isok(m, n), m++); m;} \\ Michel Marcus, Dec 07 2014

Extensions

a(18)-a(33) from Robert Price, Dec 07 2014