A246810 a(n) is the smallest number m such that np(m) = n, where np(m) is number of primes p such that prime(m) < p < prime(m)^(1 + 1/m).
1, 5, 12, 17, 25, 55, 83, 169, 207, 206, 384, 953, 1615, 2192, 2197, 3024, 3023, 10709, 10935, 29509, 29508, 62736, 62735, 94333, 94332, 196966, 314940, 608777, 1258688, 1767259, 2448975, 2448973, 7939362, 9373136, 9373134, 16854966, 16854967
Offset: 1
Keywords
Examples
a(6) = 55 since the number of primes p such that prime(55) < p < prime(55)^(1 + 1/55) is 6 and 55 is the smallest number with this property.
Links
- Robert Price, Table of n, a(n) for n = 1..64
- A. Kourbatov, Verification of the Firoozbakht conjecture for primes up to four quintillion, arXiv:1503.01744 [math.NT], 2015
- A. Kourbatov, Upper bounds for prime gaps related to Firoozbakht's conjecture, J. Int. Seq. 18 (2015) 15.11.2
- Nilotpal Kanti Sinha, On a new property of primes that leads to a generalization of Cramer's conjecture, arXiv:1010.1399v2 [math.NT], 2010.
- Wikipedia, Firoozbakht's conjecture.
Programs
-
Mathematica
np[n_]:=(b=Prime[n]; Length[Select[Range[b+1, b^(1 + 1/n)],PrimeQ]]); a[n_]:=(For[m=1, np[m] !=n, m++]; m); Do[Print[a[n]], {n, 37}]
Comments