A246816 Expansion of phi(q) * phi(-q^2) * phi(-q^4) in powers of q where phi() is a Ramanujan theta function.
1, 2, -2, -4, 0, -4, 0, 8, -2, 6, 8, -4, 0, -12, 0, 8, -4, 8, -10, -12, 0, -8, 0, 8, 8, 14, 8, -16, 0, -4, 0, 16, 6, 16, -16, -8, 0, -20, 0, 8, -8, 8, 16, -20, 0, -20, 0, 16, -8, 18, -10, -8, 0, -12, 0, 24, 0, 16, 24, -12, 0, -20, 0, 24, 12, 8, -16, -28, 0
Offset: 0
Keywords
Examples
G.f. = 1 + 2*q - 2*q^2 - 4*q^3 - 4*q^5 + 8*q^7 - 2*q^8 + 6*q^9 + 8*q^10 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
a[n_]:= SeriesCoefficient[EllipticTheta[3, 0, q]* EllipticTheta[3, 0, -q^2]*EllipticTheta[3, 0, -q^4], {q, 0, n}]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Nov 30 2017 *)
-
PARI
{a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^7 / (eta(x + A)^2 * eta(x^4 + A) * eta(x^8 + A)), n))};
Comments