cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246824 Numbers k for which A242720(k) = (prime(k)+1)^2 + 2.

Original entry on oeis.org

3, 35, 41, 52, 57, 81, 104, 209, 215, 343, 373, 398, 473, 477, 584, 628, 768, 774, 828, 872, 1117, 1145, 1189, 1287, 1324, 1435, 1615, 1634, 1653, 1704, 1886, 1925, 2070, 2075, 2123, 2171, 2193, 2425, 2449, 2605, 2633, 2934, 2948, 3019, 3194, 3273, 3533, 3552, 3685, 3758
Offset: 1

Views

Author

Vladimir Shevelev, Sep 04 2014

Keywords

Comments

By a comment in A246748, A242720(k) >= (prime(k)+1)^2 + 2, and equality is attained in this sequence.
Prime(a(n)) >= 5 and is in the intersection of A001359 and A157468.

Crossrefs

Programs

  • Mathematica
    lpf[n_] := FactorInteger[n][[1, 1]]; aQ[n_] := Module[{k=6}, While[PrimeQ[k-3] && PrimeQ[k-1] || lpf[k-1]<=lpf[k-3] || lpf[k-3]Amiram Eldar, Dec 10 2018 *)
  • PARI
    lpf(k) = factorint(k)[1, 1];
    f(n) = my(k=6); while((isprime(k-3) && isprime(k-1)) || lpf(k-1)<=lpf(k-3) || lpf(k-3)A242720
    isok(n) = f(n) == (prime(n)+1)^2 + 2; \\ Michel Marcus, Dec 10 2018
    
  • Python
    from sympy import prime, isprime, factorint
    A246824_list = [a for a, b in ((n, prime(n)+1) for n in range(3,10**3)) if (not (isprime(b**2-1) and isprime(b**2+1)) and (min(factorint(b**2+1)) > min(factorint(b**2-1)) >= b-1))] # Chai Wah Wu, Jun 03 2019

Extensions

a(40)-a(50) from b-file by Robert Price, Sep 08 2019