A246832 Expansion of psi(x) * psi(x^2) * phi(x^2) in powers of x where phi(), psi() are Ramanujan theta functions.
1, 1, 3, 4, 2, 5, 2, 3, 7, 5, 5, 6, 5, 3, 10, 6, 3, 7, 7, 4, 11, 9, 3, 14, 8, 8, 5, 4, 7, 10, 13, 7, 8, 10, 7, 15, 8, 4, 17, 10, 8, 11, 10, 5, 16, 11, 4, 11, 15, 8, 14, 10, 7, 22, 8, 9, 14, 8, 13, 21, 12, 5, 13, 15, 6, 21, 15, 9, 13, 8, 11, 9, 12, 15, 20, 21
Offset: 0
Keywords
Examples
G.f. = 1 + x + 3*x^2 + 4*x^3 + 2*x^4 + 5*x^5 + 2*x^6 + 3*x^7 + 7*x^8 + ... G.f. = q^3 + q^11 + 3*q^19 + 4*q^27 + 2*q^35 + 5*q^43 + 2*q^51 + 3*q^59 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..2500
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Crossrefs
Cf. A246816.
Programs
-
Mathematica
eta[q_] := q^(1/24)*QPochhammer[q]; a:= CoefficientList[Series[q^(-3/8)* eta[q^4]^7/(eta[q]*eta[q^2]*eta[q^8]^2), {q, 0, 60}], q]]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Aug 05 2018 *)
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^4 + A)^7 / (eta(x + A) * eta(x^2 + A) * eta(x^8 + A)^2), n))};
Formula
Expansion of psi(x) * psi(x^2)^3 / psi(x^4) in powers of x where psi() is a Ramanujan theta function.
Expansion of q^(-3/8) * eta(q^4)^7 / (eta(q) * eta(q^2) * eta(q^8)^2) in powers of q.
Euler transform of period 8 sequence [1, 2, 1, -5, 1, 2, 1, -3, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (64 t)) = 2 (t/i)^(3/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A246816.
Comments