cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246832 Expansion of psi(x) * psi(x^2) * phi(x^2) in powers of x where phi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

1, 1, 3, 4, 2, 5, 2, 3, 7, 5, 5, 6, 5, 3, 10, 6, 3, 7, 7, 4, 11, 9, 3, 14, 8, 8, 5, 4, 7, 10, 13, 7, 8, 10, 7, 15, 8, 4, 17, 10, 8, 11, 10, 5, 16, 11, 4, 11, 15, 8, 14, 10, 7, 22, 8, 9, 14, 8, 13, 21, 12, 5, 13, 15, 6, 21, 15, 9, 13, 8, 11, 9, 12, 15, 20, 21
Offset: 0

Views

Author

Michael Somos, Sep 04 2014

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + x + 3*x^2 + 4*x^3 + 2*x^4 + 5*x^5 + 2*x^6 + 3*x^7 + 7*x^8 + ...
G.f. = q^3 + q^11 + 3*q^19 + 4*q^27 + 2*q^35 + 5*q^43 + 2*q^51 + 3*q^59 + ...
		

Crossrefs

Cf. A246816.

Programs

  • Mathematica
    eta[q_] := q^(1/24)*QPochhammer[q]; a:= CoefficientList[Series[q^(-3/8)* eta[q^4]^7/(eta[q]*eta[q^2]*eta[q^8]^2), {q, 0, 60}], q]]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Aug 05 2018 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^4 + A)^7 / (eta(x + A) * eta(x^2 + A) * eta(x^8 + A)^2), n))};

Formula

Expansion of psi(x) * psi(x^2)^3 / psi(x^4) in powers of x where psi() is a Ramanujan theta function.
Expansion of q^(-3/8) * eta(q^4)^7 / (eta(q) * eta(q^2) * eta(q^8)^2) in powers of q.
Euler transform of period 8 sequence [1, 2, 1, -5, 1, 2, 1, -3, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (64 t)) = 2 (t/i)^(3/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A246816.