A246865 Total number of reduced decompositions for all permutations in S_n.
1, 1, 2, 7, 66, 3061, 1095266, 3906746485, 165835140118904, 96867653699340061187, 883158060528372369857672080, 140546577721904223563711600192372503
Offset: 0
Examples
a(4) = 66 is summarized in a table of multiplicity versus length: length = 0 1 2 3 4 5 6 multiplicity +---------------------+ 1 | 1 3 4 2 . . . | = 10 1*10 = 10 2 | . . 1 4 1 . . | = 6 2*6 = 12 3 | . . . . 4 . . | = 4 3*4 = 12 5 | . . . . . 2 . | = 2 5*2 = 10 6 | . . . . . 1 . | = 1 6*1 = 6 16 | . . . . . . 1 | = 1 16*1 = 16 +---------------------+ -- -- 1 3 5 6 5 3 1 = 24 a(4) = 66. - _Michael Somos_, Sep 07 2014
References
- Bridget Eileen Tenner, Enumerating in Coxeter Groups (Survey), Advances in Mathematical Sciences, pp 75-82, Springer 2020.
Links
- FindStat - Combinatorial Statistic Finder, The number of ways to write a permutation as a minimal length product of simple transpositions
- M. J. Hay, J. Schiff, N. J. Fisch, Maximal energy extraction under discrete diffusive exchange, arXiv preprint arXiv:1508.03499, 2015
- M. J. Hay, J. Schiff, N. J. Fisch, Available free energy under local phase space diffusion, arXiv preprint arXiv:1604.08573, 2016
- M. J. Hay, J. Schiff, N. J. Fisch, On extreme points of the diffusion polytope, Physica A 473 (2017) 225-236. doi:10.1016/j.physa.2017.01.038
- R. P. Stanley, On the number of reduced decompositions of elements of Coxeter groups, European J. Combin., 5 (1984), 359-372.
Extensions
a(0)=1 prepended and a(7)-a(11) from Alois P. Heinz, Jul 10 2017
Comments