A246869 Cube root of the smallest of the largest absolute values of parts of the partitions of n into four cubes, or -1 if no such partition exists.
0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 11, 2, 2, 2, 2, 2, 3, 3, 3, 16, 2, 2, 2, 3, 3, 3, 3, 3, 52, 2, 3, 3, 3, 3, 3, 3, 4, 4, 8, 3, 3, 3, 3, 3, 3, 4, 4, 49, 3, 3, 3, 3, 3, 3, 4, 4, 5, 5, 3, 3, 3, 4, 4, 4, 4, 5, 5, 3, 4, 4, 3, 4, 4, 11, 5, 8, 4, 3, 3, 3, 4, 4
Offset: 0
Keywords
Examples
The partition of 13 into 1^3+7^3+10^3+(-11)^3 has a part 11^3 in absolute value. Any other partition of 13 into four cubes has a part larger than 11^3 in absolute value. Thus a(13) = 11.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..20000
Crossrefs
Cf. A243113.
Programs
-
Maple
b:= proc(n, i, t) n=0 or t*i^3>=n and (b(n, i-1, t) or b(n+i^3, i, t-1) or b(abs(n-i^3), i, t-1)) end: a:= proc(n) local k; for k from 0 do if b(n, k, 4) then return k fi od end: seq(a(n), n=0..30); # Alois P. Heinz, Sep 05 2014
-
Mathematica
b[n_, i_, t_] := b[n, i, t] = n == 0 || t i^3 >= n && (b[n, i - 1, t] || b[n + i^3, i, t - 1] || b[Abs[n - i^3], i, t - 1]); a[n_] := Module[{k}, For[k = 0, True, k++, If[b[n, k, 4], Return[k]]]]; a /@ Range[0, 100] (* Jean-François Alcover, Nov 13 2020, after Alois P. Heinz *)
Extensions
More terms from Alois P. Heinz, Sep 05 2014
Comments